Large deviations, Guerra's and ASS schemes, and the Parisi hypothesis

被引:15
作者
Talagrand, Michel
机构
[1] Univ Paris 06, Inst Math, CNRS, UMR 7586, F-75252 Paris 05, France
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
mean field models; spin glasses; Parisi solution;
D O I
10.1007/s10955-006-9108-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the problem of computing lim(N -> infinity) 1/aN log EZ(N)(a) for any value of a, where Z(N) is the partition function of the celebrated Sherrington-Kirkpatrick (SK) model, or of some of its natural generalizations. This is a natural "large deviation" problem. Its study helps to get a fresh look at some of the recent ideas introduced in the area, and raises a number of natural questions. We provide a complete solution for a >= 0.
引用
收藏
页码:837 / 894
页数:58
相关论文
共 15 条
[1]   Extended variational principle for the Sherrington-Kirkpatrick spin-glass model [J].
Aizenman, M ;
Sims, R ;
Starr, SL .
PHYSICAL REVIEW B, 2003, 68 (21)
[2]   THE SPHERICAL P-SPIN INTERACTION SPIN-GLASS MODEL - THE STATICS [J].
CRISANTI, A ;
SOMMERS, HJ .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 87 (03) :341-354
[3]  
DOTSENKO V, 2004, PREPRINT
[4]   General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity [J].
Ghirlanda, S ;
Guerra, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (46) :9149-9155
[5]   Broken replica symmetry bounds in the mean field spin glass model [J].
Guerra, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (01) :1-12
[6]   Quadratic replica coupling in the Sherrington-Kirkpatrick mean field spin glass model [J].
Guerra, F ;
Toninelli, FL .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) :3704-3716
[7]  
GUERRA F, 2003, 0307673 CONDMATH
[8]  
MEZARD M, 1987, SPIN GLASS THOERY
[9]  
PANCHENKO D, IN PRESS ELECT COM P, V10
[10]   On the distribution of the overlaps at given disorder [J].
Parisi, G ;
Talagrand, M .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (04) :303-306