A Robust Fuzzy Local Information C-Means Clustering Algorithm

被引:906
作者
Krinidis, Stelios [1 ]
Chatzis, Vassilios [1 ]
机构
[1] Technol Inst Kavala, Dept Informat Management, Kavala 65404, Greece
关键词
Clustering; fuzzy c-means; fuzzy constraints; gray level constraints; image segmentation; spatial constraints; IMAGE SEGMENTATION; STRATEGIES; MRI;
D O I
10.1109/TIP.2010.2040763
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a variation of fuzzy c-means (FCM) algorithm that provides image clustering. The proposed algorithm incorporates the local spatial information and gray level information in a novel fuzzy way. The new algorithm is called fuzzy local information C-Means (FLICM). FLICM can overcome the disadvantages of the known fuzzy c-means algorithms and at the same time enhances the clustering performance. The major characteristic of FLICM is the use of a fuzzy local (both spatial and gray level) similarity measure, aiming to guarantee noise insensitiveness and image detail preservation. Furthermore, the proposed algorithm is fully free of the empirically adjusted parameters (alpha, lambda(g), lambda(s), etc.) incorporated into all other fuzzy c-means algorithms proposed in the literature. Experiments performed on synthetic and real-world images show that FLICM algorithm is effective and efficient, providing robustness to noisy images.
引用
收藏
页码:1328 / 1337
页数:10
相关论文
共 25 条
[1]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[2]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[3]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838
[4]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916
[5]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[6]   Generalized fuzzy c-means clustering strategies using Lp norm distances [J].
Hathaway, RJ ;
Bezdek, JC ;
Hu, YK .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) :576-582
[7]   A generic fuzzy rule based image segmentation algorithm [J].
Karmakar, GC ;
Dooley, LS .
PATTERN RECOGNITION LETTERS, 2002, 23 (10) :1215-1227
[8]   Color Texture Segmentation Based on the Modal Energy of Deformable Surfaces [J].
Krinidis, Michail ;
Pitas, Ioannis .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) :1613-1622
[9]   Towards a robust fuzzy clustering [J].
Leski, J .
FUZZY SETS AND SYSTEMS, 2003, 137 (02) :215-233
[10]  
*M MATHW NAT, IM PROC TOOLB