Unidirectional hybridization at a species' range boundary: implications for habitat tracking

被引:30
作者
Beatty, Gemma E. [1 ]
Philipp, Marianne [2 ]
Provan, Jim [1 ]
机构
[1] Queens Univ Belfast, Sch Biol Sci, Belfast BT9 7BL, Antrim, North Ireland
[2] Univ Copenhagen, Dept Biol, DK-2100 Copenhagen O, Denmark
关键词
Genetic assimilation; hybridization; introgression; Pyrola grandiflora; Pyrola minor; range-edge; NONCODING REGIONS; UNIVERSAL PRIMERS; GENETIC-ANALYSIS; EXTINCTION; POPULATIONS; AMPLIFICATION; INTROGRESSION; MITOCHONDRIAL; INDIVIDUALS; PATTERNS;
D O I
10.1111/j.1472-4642.2009.00616.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Aim Introgressive hybridization between a locally rare species and a more abundant congener can drive population extinction via genetic assimilation, or the replacement of the rare species gene pool with that of the common species. To date, however, few studies have assessed the effects of such processes at the limits of species' distribution ranges. In this study, we have examined the potential for hybridization between range-edge populations of the wintergreen Pyrola minor and sympatric populations of Pyrola grandiflora. Location Qeqertarsuaq, Greenland and Churchill, Manitoba, Canada. Methods Genetic analysis of samples from Greenland and Canada was carried out using a combination of nuclear and chloroplast single nucleotide polymorphisms (SNPs). Results Analysis of nuclear SNPs confirmed hybridization in populations of morphologically intermediate individuals, as well as revealing the existence of cryptic hybrids in ostensibly morphologically pure P. minor populations. Analysis of chloroplast SNPs revealed that this hybridization is unidirectional and suggests that hybrids originate via pollen swamping of P. minor by the more common P. grandiflora. Main conclusions Extensive unidirectional hybridization may lead to the extinction of peripheral populations of P. minor where the two species grow sympatrically. Extinction could occur as a result of genetic assimilation where F(1)s are fertile, or via the removal of unidirectionally pollinated sterile F(1)s, or by a combination of these processes. This could compromise the ability of species to respond to climate change via habitat tracking, although the final outcome of these processes may ultimately depend on the rate of global climate change and its effect on the species' distributions.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 52 条
[1]   The problems with hybrids: setting conservation guidelines [J].
Allendorf, FW ;
Leary, RF ;
Spruell, P ;
Wenburg, JK .
TRENDS IN ECOLOGY & EVOLUTION, 2001, 16 (11) :613-622
[2]   HYBRIDIZATION AS AN EVOLUTIONARY STIMULUS [J].
ANDERSON, E ;
STEBBINS, GL .
EVOLUTION, 1954, 8 (04) :378-388
[3]  
Anderson EC, 2002, GENETICS, V160, P1217
[4]  
[Anonymous], 1964, On the Origin of Species
[5]   The role of hybridization in evolution [J].
Barton, NH .
MOLECULAR ECOLOGY, 2001, 10 (03) :551-568
[6]   Range-edge effects promote clonal growth in peripheral populations of the one-sided wintergreen Orthilia secunda [J].
Beatty, Gemma E. ;
McEvoy, Peter M. ;
Sweeney, Oisin ;
Provan, Jim .
DIVERSITY AND DISTRIBUTIONS, 2008, 14 (03) :546-555
[7]   Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii [J].
Berthier, Pierre ;
Excoffier, Laurent ;
Ruedi, Manuel .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 273 (1605) :3101-3109
[8]  
BOCHER T. W., 1961, BOT TIDSSKR, V57, P28
[9]  
Boecklen WJ, 1997, ECOLOGY, V78, P2611, DOI 10.1890/0012-9658(1997)078[2611:GAOHZN]2.0.CO
[10]  
2