Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells

被引:131
作者
Perrais, D
Kleppe, IC
Taraska, JW
Almers, W
机构
[1] Oregon Hlth & Sci Univ, Vollum Inst, Portland, OR 97239 USA
[2] Univ Cambridge, Physiol Lab, Cambridge CB2 3EG, England
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2004年 / 560卷 / 02期
关键词
D O I
10.1113/jphysiol.2004.064410
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
After exocytosis, chromaffin granules release essentially all their catecholamines in small fractions of a second, but it is unknown how fast they release stored peptides and proteins. Here we compare the exocytic release of fluorescently labelled neuropeptide Y (NPY) and tissue plasminogen activator from single granules. Exocytosis was tracked by measuring the membrane capacitance, and single granules in live cells were imaged by evanescent field microscopy. Neuropeptide Y left most granules in small fractions of a second, while tissue plasminogen activator remained in open granules for minutes. Taking advantage of the dependence on pH of the fluorescence of green fluorescent protein, we used rhythmic external acidification to determine whether and when granules re-sealed. One-third of them re-sealed within 100 s and retained significant levels of tissue plasminogen activator. Re-sealing accounts for only a fraction of the endocytosis monitored in capacitance measurements. When external [Ca2+] was raised, even neuropeptide Y remained in open granules until they re-sealed. It is concluded that a significant fraction of chromaffin granules re-seal after exocytosis, and retain those proteins that leave granules slowly. We suggest that granules vary the stoichiometry of release by varying both granule re-sealing and the association of proteins
引用
收藏
页码:413 / 428
页数:16
相关论文
共 57 条
[1]   The exocytotic event in chromaffin cells revealed by patch amperometry [J].
Albillos, A ;
Dernick, G ;
Horstmann, H ;
Almers, W ;
deToledo, GA ;
Lindau, M .
NATURE, 1997, 389 (6650) :509-512
[2]   High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism [J].
Alés, E ;
Tabares, L ;
Poyato, JM ;
Valero, V ;
Lindau, M ;
de Toledo, GA .
NATURE CELL BIOLOGY, 1999, 1 (01) :40-44
[3]   Regulation of dense cove release from neuroendocrine cells revealed by imaging single exocytic events [J].
Angleson, JK ;
Cochilla, AJ ;
Kilic, G ;
Nussinovitch, I ;
Betz, WJ .
NATURE NEUROSCIENCE, 1999, 2 (05) :440-446
[4]   Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells [J].
Artalejo, CR ;
Elhamdani, A ;
Palfrey, HC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6358-6363
[5]   RAPID ENDOCYTOSIS COUPLED TO EXOCYTOSIS IN ADRENAL CHROMAFFIN CELLS INVOLVES CA2+, GTP, AND DYNAMIN BUT NOT CLATHRIN [J].
ARTALEJO, CR ;
HENLEY, JR ;
MCNIVEN, MA ;
PALFREY, CH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8328-8332
[6]   Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells [J].
Barg, S ;
Olofsson, CS ;
Schriever-Abeln, J ;
Wendt, A ;
Gebre-Medhin, S ;
Renström, E ;
Rorsman, P .
NEURON, 2002, 33 (02) :287-299
[7]   DELAY IN VESICLE FUSION REVEALED BY ELECTROCHEMICAL MONITORING OF SINGLE SECRETORY EVENTS IN ADRENAL CHROMAFFIN CELLS [J].
CHOW, RH ;
VONRUDEN, L ;
NEHER, E .
NATURE, 1992, 356 (6364) :60-63
[8]  
CORCORAN JJ, 1984, J BIOL CHEM, V259, P6208
[9]  
CURRAN MJ, 1993, J MEMBRANE BIOL, V133, P61
[10]   Exocytosis of single chromaffin granules in cell-free inside-out membrane patches [J].
Dernick, G ;
de Toledo, GA ;
Lindau, M .
NATURE CELL BIOLOGY, 2003, 5 (04) :358-362