Characterization of a lipoprotein, NilC, required by Xenorhabdus nematophila for mutualism with its nematode host

被引:37
作者
Cowles, CE [1 ]
Goodrich-Blair, H [1 ]
机构
[1] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
关键词
D O I
10.1111/j.1365-2958.2004.04271.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xenorhabdus nematophila is a gamma-proteobacterial mutualist of an insect-pathogenic nematode, Steinernema carpocapsae. X. nematophila requires nilC, a gene predicted to encode an outer membrane lipoprotein of unknown function, for colonization of its nematode host. Characterization of NilC, described here, demonstrated it is a 28 kDa lipoprotein directed to the periplasm by an N-terminal signal sequence. Lipidation and processing of NilC occurs by a mechanism that is conserved in proteobacteria. This work also showed NilC is membrane associated and oriented towards the periplasm of X. nematophila and is produced as an outer membrane-associated protein when expressed in Escherichia coli. Expression analyses revealed that nilC transcription is directly or indirectly repressed by Lrp, and this regulatory link may explain the nematode mutualism defect of a previously identified lrp::Tn5 mutant. An lrp::Tn5 mutant produces an additional nilC transcript, not observed in wild-type cells growing in vitro, and produces approximate to 75-fold more nilC than wild-type cells in late stationary phase. These fundamental characterizations of nilC expression and nilC localization and processing events have provided firm bases for understanding the role of this colonization factor in the X. nematophila/S. carpocapsae microbe-host interaction.
引用
收藏
页码:464 / 477
页数:14
相关论文
共 54 条
[1]   AN IMPROVED TN7-BASED SYSTEM FOR THE SINGLE-COPY INSERTION OF CLONED GENES INTO CHROMOSOMES OF GRAM-NEGATIVE BACTERIA [J].
BAO, Y ;
LIES, DP ;
FU, H ;
ROBERTS, GP .
GENE, 1991, 109 (01) :167-168
[2]   THE NATURE OF THE INTESTINAL VESICLE IN NEMATODES OF THE FAMILY STEINERNEMATIDAE [J].
BIRD, AF ;
AKHURST, RJ .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 1983, 13 (06) :599-606
[3]   The Lrp family of transcriptional regulators [J].
Brinkman, AB ;
Ettema, TJG ;
de Vos, WM ;
van der Oost, J .
MOLECULAR MICROBIOLOGY, 2003, 48 (02) :287-294
[4]   Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins [J].
Bunikis, J ;
Barbour, AG .
INFECTION AND IMMUNITY, 1999, 67 (06) :2874-2883
[5]   DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters:: a systematic study [J].
Burr, T ;
Mitchell, J ;
Kolb, A ;
Minchin, S ;
Busby, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (09) :1864-1870
[6]   SELECTION OF THE MESSENGER-RNA TRANSLATION INITIATION REGION BY ESCHERICHIA-COLI RIBOSOMES [J].
CALOGERO, RA ;
PON, CL ;
CANONACO, MA ;
GUALERZI, CO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (17) :6427-6431
[7]   COMPARISON OF THE POLYPEPTIDE COMPOSITION OF ESCHERICHIA-COLI OUTER MEMBRANES PREPARED BY 2 METHODS [J].
CHOPRA, I ;
SHALES, SW .
JOURNAL OF BACTERIOLOGY, 1980, 144 (01) :425-427
[8]   Transferrin-iron uptake by gram-negative bacteria [J].
Cornelissen, CN .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2003, 8 :D836-D847
[9]  
DEV IK, 1985, J BIOL CHEM, V260, P5891
[10]  
DRAPER DE, 1996, ESCHERICHIA COLI SAL, V1, P902