On spatial adaptivity and interpolation when using the method of lines

被引:31
作者
Berzins, M
Capon, PJ
Jimack, PK [1 ]
机构
[1] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
[2] Tessella Support Serv PLC, Abingdon, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
adaptive remeshing; method of lines; interpolation errors;
D O I
10.1016/S0168-9274(97)00091-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution of time-dependent partial differential equations with discrete time static remeshing is considered within a method of lines framework. Numerical examples in one and two space dimensions are used to show that spatial interpolation error may have an important impact on the efficiency of integration. Analysis of a simple problem and of the time integration method is used to confirm the experimental results and a computational test for monitoring the impact of this error is derived and tested. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:117 / 133
页数:17
相关论文
共 25 条
[1]  
[Anonymous], 1989, Adaptive Methods for Partial Differential Equations
[2]  
BABUSKA I, 1983, P WORKSH U MAR
[3]  
BANK RE, 1997, COMMUNICATION
[4]  
BANK RE, 1994, PLTMG SOFTW PACK SOL
[5]   A C-1 INTERPOLANT FOR CODES BASED ON BACKWARD DIFFERENTIATION FORMULAS [J].
BERZINS, M .
APPLIED NUMERICAL MATHEMATICS, 1986, 2 (02) :109-118
[6]  
BERZINS M, 1986, TNER86050 THORNT RES
[7]  
BERZINS M, 1989, APPL NUMER MATH, V5, P373
[8]   COMPRESSIBLE VISCOUS-FLOW CALCULATIONS USING COMPATIBLE FINITE-ELEMENT APPROXIMATIONS [J].
BRISTEAU, MO ;
GLOWINSKI, R ;
DUTTO, L ;
PERIAUX, J ;
ROGE, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1990, 11 (06) :719-749
[9]  
CAPON PJ, 1995, THESIS U LEEDS
[10]  
EWING RE, 1986, ACCURACY ESTIMATES A, pCH16