Carbon sequestration in arid-land forest

被引:204
作者
Grünzweig, JM
Lin, T
Rotenberg, E
Schwartz, A
Yakir, D [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Hebrew Univ Jerusalem, IL-76100 Rehovot, Israel
关键词
carbon inventory; micrometeorological flux measurements; net ecosystem exchange; photosynthesis; pine afforestation; water use efficiency;
D O I
10.1046/j.1365-2486.2003.00612.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Rising atmospheric CO2 concentrations may lead to increased water availability because the water use efficiency of photosynthesis (WUE) increases with CO2 in most plant species. This should allow the extension of afforestation activities into drier regions. Using eddy flux, physiological and inventory measurements we provide the first quantitative information on such potential from a 35-year old afforestation system of Aleppo pine (Pinus halepensis Mill.) at the edge of the Negev desert. This 2800 ha arid-land forest contains 6.5 +/- 1.2 kg C m(-2) , and continues to accumulate 0.13-0.24 kg C m(-2) yr(-1) . The CO2 uptake is highest during the winter, out of phase with most northern hemispheric forest activity. This seasonal offset offers low latitude forests similar to10 ppm higher CO2 concentrations than that available to higher latitude forests during the productive season, in addition to the 30% increase in mean atmospheric CO2 concentrations since the 1850s. Expanding afforestation efforts into drier regions may be significant for C sequestration and associated benefits (restoration of degraded land, reducing runoff, erosion and soil compaction, improving wildlife) because of the large spatial scale of the regions potentially involved (ca. 2 x 10(9) ha of global shrub-land and C4 grassland). Quantitative information on forest activities under dry conditions may also become relevant to regions predicted to undergo increasing aridity.
引用
收藏
页码:791 / 799
页数:9
相关论文
共 41 条
[1]  
Aubinet M, 2000, ADV ECOL RES, V30, P113, DOI 10.1016/S0065-2504(08)60018-5
[2]  
Baldocchi D, 2001, B AM METEOROL SOC, V82, P2415, DOI 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO
[3]  
2
[4]   Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest [J].
Barford, CC ;
Wofsy, SC ;
Goulden, ML ;
Munger, JW ;
Pyle, EH ;
Urbanski, SP ;
Hutyra, L ;
Saleska, SR ;
Fitzjarrald, D ;
Moore, K .
SCIENCE, 2001, 294 (5547) :1688-1691
[5]   Global carbon sinks and their variability inferred from atmospheric O2 and δ13C [J].
Battle, M ;
Bender, ML ;
Tans, PP ;
White, JWC ;
Ellis, JT ;
Conway, T ;
Francey, RJ .
SCIENCE, 2000, 287 (5462) :2467-2470
[6]   The response of global terrestrial ecosystems to interannual temperature variability [J].
Braswell, BH ;
Schimel, DS ;
Linder, E ;
Moore, B .
SCIENCE, 1997, 278 (5339) :870-872
[7]  
BRUINS HJ, 1998, ARID FRONTIER INTERA, P97
[8]  
Buchmann N., 2001, GLOBAL BIOGEOCHEMICA, P253
[9]   Contributions of land-use history to carbon accumulation in US forests [J].
Caspersen, JP ;
Pacala, SW ;
Jenkins, JC ;
Hurtt, GC ;
Moorcroft, PR ;
Birdsey, RA .
SCIENCE, 2000, 290 (5494) :1148-1151
[10]   PLANT-INDUCED SOIL CHEMICAL PATTERNS IN SOME SHRUB-DOMINATED SEMI-DESERT ECOSYSTEMS OF UTAH [J].
CHARLEY, JL ;
WEST, NE .
JOURNAL OF ECOLOGY, 1975, 63 (03) :945-963