Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans

被引:52
作者
Malik, HS
Burke, WD
Eickbush, TH [1 ]
机构
[1] Univ Rochester, Dept Biol, Rochester, NY 14627 USA
[2] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
关键词
non-LTR retrotransposons; phylogeny; reverse transcriptase; telomeres;
D O I
10.1016/S0378-1119(00)00207-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Eukaryotic chromosomes end in short nucleotide repeats that are added by the enzyme telomerase. The catalytic subunit of telomerase has been shown to be most closely related in sequence to reverse transcriptases encoded by eukaryotic retrotransposable elements. This raises the question as to whether the telomerase subunit was present in the first eukaryotes or was derived during early eukaryote evolution from the replication machinery of a retrotransposable element. We present the sequence of a putative telomerase catalytic subunit from the diplomonad parasite, Giardia lamblia. The G. lamblia subunit appears to have most of the characteristics of other sequenced telomerases, except that it lacks the conserved telomerase-specific 'T' motif previously identified in other eukaryotic genes. Searching genomic databases with the G. lamblia sequence, we also identified a potential telomerase catalytic subunit from Caenorhabditis elegans. The C. elegans subunit is uncharacteristically short, and lacks several motifs found in all other telomerases. The identification of a G. lambia telomerase similar to that of most other eukaryotes suggests that telomerase dates back to the earliest extant marker of eukaryotic evolution. The atypical C. elegans telomerase, on the other hand, raises intriguing biochemical questions concerning sub-domains of the telomerase catalytic subunit previously considered indispensable. The enzymatic machinery for telomere formation in C. elegans is likely to differ substantially from that of other eukaryotes. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 34 条
[1]   TELOMERIC LOCATION OF GIARDIA RDNA GENES [J].
ADAM, RD ;
NASH, TE ;
WELLEMS, TE .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (06) :3326-3330
[2]   Evidence for a clade of nematodes, arthropods and other moulting animals [J].
Aguinaldo, AMA ;
Turbeville, JM ;
Linford, LS ;
Rivera, MC ;
Garey, JR ;
Raff, RA ;
Lake, JA .
NATURE, 1997, 387 (6632) :489-493
[3]   MRT-2 checkpoint protein is required for germline immortality and telomere replication in C-elegans [J].
Ahmed, S ;
Hodgkin, J .
NATURE, 2000, 403 (6766) :159-164
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]   An artificial intelligence approach to motif discovery in protein sequences: Application to steroid dehydrogenases [J].
Bailey, TL ;
Baker, ME ;
Elkan, CP .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1997, 62 (01) :29-44
[6]   Caenorhabditis elegans is a nematode [J].
Blaxter, M .
SCIENCE, 1998, 282 (5396) :2041-2046
[7]   Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax [J].
Bryan, TM ;
Sperger, JM ;
Chapman, KB ;
Cech, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8479-8484
[8]   The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods [J].
Burke, WD ;
Malik, HS ;
Jones, JP ;
Eickbush, TH .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (04) :502-511
[9]   Genome sequence of the nematode C-elegans:: A platform for investigating biology [J].
不详 .
SCIENCE, 1998, 282 (5396) :2012-2018
[10]   PURIFICATION OF TETRAHYMENA TELOMERASE AND CLONING OF GENES ENCODING THE 2 PROTEIN-COMPONENTS OF THE ENZYME [J].
COLLINS, K ;
KOBAYASHI, R ;
GREIDER, CW .
CELL, 1995, 81 (05) :677-686