O(N) linear sigma model at finite temperature beyond the Hartree approximation -: art. no. 085006

被引:30
作者
Baacke, J [1 ]
Michalski, S [1 ]
机构
[1] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany
来源
PHYSICAL REVIEW D | 2003年 / 67卷 / 08期
关键词
D O I
10.1103/PhysRevD.67.085006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the O(N) linear sigma model with spontaneous symmetry breaking, using a Hartree-like Ansatz with a classical field and variational masses. We go beyond the Hartree approximation by including the two-loop contribution, the sunset diagram, using the 2PPI expansion. We compute numerically the effective potential at finite temperature. We find a phase transition of second order, while it is first order in the Hartree approximation. We also discuss some implications of the fact that, in this order, the decay of the sigma into two pions affects the thermal diagrams.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Far-from-equilibrium dynamics with broken symmetries from the 1/N expansion of the 2PI effective action -: art. no. 045008 [J].
Aarts, G ;
Ahrensmeier, D ;
Baier, R ;
Berges, J ;
Serreau, J .
PHYSICAL REVIEW D, 2002, 66 (04)
[2]   SELF-CONSISTENT IMPROVEMENT OF THE FINITE-TEMPERATURE EFFECTIVE POTENTIAL [J].
AMELINO-CAMELIA, G ;
PI, SY .
PHYSICAL REVIEW D, 1993, 47 (06) :2356-2362
[3]   Thermal effective potential of the O(N) linear sigma model [J].
Amelino-Camelia, G .
PHYSICS LETTERS B, 1997, 407 (3-4) :268-274
[4]  
[Anonymous], HEPPH0205271
[5]  
Baacke J, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.065019
[6]  
Baacke J, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.105022
[7]  
BAACKE J, HEPPH0212312
[8]   COMMENT ON THE FINITE-TEMPERATURE BEHAVIOR OF LAMBDA(-]PHI-2)2(4) THEORY [J].
BARDEEN, WA ;
MOSHE, M .
PHYSICAL REVIEW D, 1986, 34 (04) :1229-1231
[9]   PHASE-STRUCTURE OF THE O(N) VECTOR MODEL [J].
BARDEEN, WA ;
MOSHE, M .
PHYSICAL REVIEW D, 1983, 28 (06) :1372-1385
[10]   Controlled nonperturbative dynamics of quantum fields out of equilibrium [J].
Berges, J .
NUCLEAR PHYSICS A, 2002, 699 (3-4) :847-886