This study shows cilostazol effect to prevent remnant lipoprotein particle (RLP)-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). Upon incubation of HUVECs with RLP (50 mug/ml), adherent monocytes significantly increased by 3.3-fold with increased cell surface expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1, E-selectin, and monocyte chemoattractant protein-1 (MCP-1). Cilostazol (similar to1 - 100 muM) concentration dependently repressed these variables as did (E) 3-[(4-t-butylphenyl) sulfonyl]- 2-propenenitrile (BAY 11- 7085) (10 muM), a specific nuclear factor-kappaB (NF-kappaB) inhibitor. Cilostazol effects were significantly antagonized by iberiotoxin ( 1 muM), a maxi-K channel blocker. RLP significantly increased expression of lectin-like receptor for oxidized low-density lipoprotein (LDL) (LOX-1) receptor protein. Upon transfection with antisense LOX-1 oligodeoxynucleotide (As-LOX-1), LOX-1 receptor expression was reduced, whereas HUVECs with sense LOX-1 oligodeoxynucleotide did express high LOX-1 receptor. RLP-stimulated superoxide and tumor necrosis factor-alpha levels were significantly lowered with decreased expression of VCAM-1 and MCP-1 by transfection with As-LOX-1 as did polyinosinic acid (10 mug/ml, a LOX-1 receptor inhibitor). RLP significantly degraded inhibitory kappaBalpha in the cytoplasm and activated nuclear factor-kappaB (NF-kappaB) p65 in the nucleus of HUVECs with increased luciferase activity of NF-kappaB, all of which were reversed by cilostazol ( 10 muM), BAY 11-7085, and polyinosinic acid. Together, cilostazol suppresses RLP-stimulated increased monocyte adhesion to HUVECs by suppression of LOX-1 receptor-coupled NF-kappaB-dependent nuclear transcription via mediation of the maxi-K channel opening.