Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory

被引:646
作者
Lee, HK
Takamiya, K
Han, JS
Man, HY
Kim, CH
Rumbaugh, G
Yu, S
Ding, L
He, C
Petralia, RS
Wenthold, RJ
Gallagher, M
Huganir, RL [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Neurosci, Howard Hughes Med Inst, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Dept Psychol, Baltimore, MD 21218 USA
[3] NIDCD, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1016/S0092-8674(03)00122-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.
引用
收藏
页码:631 / 643
页数:13
相关论文
共 48 条
[1]   Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase [J].
Banke, TG ;
Bowie, D ;
Lee, HK ;
Huganir, RL ;
Schousboe, A ;
Traynelis, SF .
JOURNAL OF NEUROSCIENCE, 2000, 20 (01) :89-102
[2]   Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor [J].
Barria, A ;
Derkach, V ;
Soderling, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (52) :32727-32730
[3]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[4]   Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD [J].
Beattie, EC ;
Carroll, RC ;
Yu, X ;
Morishita, W ;
Yasuda, H ;
von Zastrow, M ;
Malenka, RC .
NATURE NEUROSCIENCE, 2000, 3 (12) :1291-1300
[5]   Modulation of AMPA receptor unitary conductance by synaptic activity [J].
Benke, TA ;
Lüthi, A ;
Isaac, JTR ;
Collingridge, GL .
NATURE, 1998, 393 (6687) :793-797
[6]   MOLECULAR-CLONING AND FUNCTIONAL EXPRESSION OF GLUTAMATE RECEPTOR SUBUNIT GENES [J].
BOULTER, J ;
HOLLMANN, M ;
OSHEAGREENFIELD, A ;
HARTLEY, M ;
DENERIS, E ;
MARON, C ;
HEINEMANN, S .
SCIENCE, 1990, 249 (4972) :1033-1037
[7]   Cortical plasticity: From synapses to maps [J].
Buonomano, DV ;
Merzenich, MM .
ANNUAL REVIEW OF NEUROSCIENCE, 1998, 21 :149-186
[8]   Role of AMPA receptor endocytosis in synaptic plasticity [J].
Carroll, RC ;
Beattie, EC ;
von Zastrow, M ;
Malenka, RC .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (05) :315-324
[9]   Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures [J].
Carroll, RC ;
Lissin, DV ;
von Zastrow, M ;
Nicoll, RA ;
Malenka, RC .
NATURE NEUROSCIENCE, 1999, 2 (05) :454-460
[10]  
Carvalho AL, 1999, J NEUROSCI, V19, P4748