Sharpening estimators using resampling

被引:1
作者
Kim, YM [1 ]
Singh, K [1 ]
机构
[1] Rutgers State Univ, Dept Stat, Piscataway, NJ 08855 USA
关键词
jackknife; bootstrap; bias correction; second-order superiority (SOS); (non-)smooth statistical function; weak dependence;
D O I
10.1016/S0378-3758(97)00079-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study ways to improve a given estimator using resampling methods like the jackknife or the bootstrap in terms of bias and the mean square error. Our key task is to devise a method to empirically check whether the bias correction employed leads to an increase or decrease in the mean square error in terms of second-order asymptotics. We derive conditions under which we can sharpen the given estimator in terms of bias and the mean square error. One may attempt to verify the condition empirically using resampling methods. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:121 / 146
页数:26
相关论文
共 26 条
[1]   A NOTE ON QUANTILES IN LARGE SAMPLES [J].
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (03) :577-&
[2]   SOME ASYMPTOTIC THEORY FOR THE BOOTSTRAP [J].
BICKEL, PJ ;
FREEDMAN, DA .
ANNALS OF STATISTICS, 1981, 9 (06) :1196-1217
[3]   AN ODD PROPERTY OF THE SAMPLE MEDIAN [J].
CABRERA, J ;
MAGULURI, G ;
SINGH, K .
STATISTICS & PROBABILITY LETTERS, 1994, 19 (04) :349-354
[5]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[6]  
EFRON B, 1981, BIOMETRIKA, V68, P589, DOI 10.1093/biomet/68.3.589
[7]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI [DOI 10.1137/1.9781611970319, 10.1137/1.9781611970319]
[8]  
Efron B., 1994, INTRO BOOTSTRAP, DOI DOI 10.1201/9780429246593
[9]  
Efron B., 1986, STAT SCI, V1, P54, DOI [DOI 10.1214/SS/1177013815, 10.1214/ss/1177013815]
[10]  
Gray HL, 1972, GEN JACKKNIFE STAT