Heterosis is of utmost economic importance in plant breeding. However, its underlying molecular causes are still unknown. Given the numerous advantages of Arabidopsis thaliana as a model species in plant genetics and genomics, we assessed the extent of heterosis in this species using five hybrids derived from five ecotypes. Parents, F-1 and F-2, generations in both reciprocal forms were grown in a greenhouse experiment with four replications. Mid-parent heterosis (MPH) and best-parent heterosis (BPH) averaged across hybrids were surprisingly high for biomass yield (MPH: 60.3%; BPH: 32.9%) and rosette diameter (MPH: 49.4%; BPH: 34.8%), but smaller for flowering date (MPH: 27.5%; BPH: 18.5%), seed yield (MPH: 18.9%; BPH: 1.7%), and yield components. Individual hybrids varied considerably in their MPH and BPH values for all traits, one cross displaying 140.1% MPH for biomass yield. MPH was not associated with parental genetic distance determined from molecular markers. Reciprocal effects were significant only in a few cases. With a proper choice of hybrids, our results encourage the use of Arabidopsis as a model species for investigating the molecular causes of heterosis.