Allele-Specific Virulence Attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 Resistance Protein

被引:138
作者
Lewis, Jennifer D. [1 ]
Wu, Ronald [1 ]
Guttman, David S. [1 ,2 ]
Desveaux, Darrell [1 ,2 ]
机构
[1] Univ Toronto, Dept Cell & Syst Biol, Toronto, ON, Canada
[2] Univ Toronto, Ctr Anal Genome Evolut & Funct, Toronto, ON, Canada
来源
PLOS GENETICS | 2010年 / 6卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
NUCLEOTIDE-BINDING SITE; DISEASE-RESISTANCE; SALICYLIC-ACID; AVIRULENCE GENE; CELL-DEATH; BACTERIAL; EDS1; NDR1; ACTIVATION; EXPRESSION;
D O I
10.1371/journal.pgen.1000894
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the similar to 170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T-DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS-LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1-mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a.
引用
收藏
页数:13
相关论文
共 78 条
[1]   Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis [J].
Aarts, N ;
Metz, M ;
Holub, E ;
Staskawicz, BJ ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10306-10311
[2]   ProtTest: selection of best-fit models of protein evolution [J].
Abascal, F ;
Zardoya, R ;
Posada, D .
BIOINFORMATICS, 2005, 21 (09) :2104-2105
[3]   Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease [J].
Ade, Jules ;
DeYoung, Brody J. ;
Golstein, Catherine ;
Innes, Roger W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2531-2536
[4]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[5]   A glucocorticoid-mediated transcriptional induction system in transgenic plants [J].
Aoyama, T ;
Chua, NH .
PLANT JOURNAL, 1997, 11 (03) :605-612
[6]   Regulatory role of SGT1 in early R gene-mediated plant defenses [J].
Austin, MJ ;
Muskett, P ;
Kahn, K ;
Feys, BJ ;
Jones, JDG ;
Parker, JE .
SCIENCE, 2002, 295 (5562) :2077-2080
[7]   Role of SGT1 in resistance protein accumulation in plant immunity [J].
Azevedo, Cristina ;
Betsuyaku, Shigeyuki ;
Peart, Jack ;
Takahashi, Akira ;
Noel, Laurent ;
Sadanandom, Ari ;
Casais, Catarina ;
Parker, Jane ;
Shirasu, Ken .
EMBO JOURNAL, 2006, 25 (09) :2007-2016
[8]   Plant disease resistance protein signaling: NBS-LRR proteins and their partners [J].
Belkhadir, Y ;
Subramaniam, R ;
Dangl, JL .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (04) :391-399
[9]   RPS2 OF ARABIDOPSIS-THALIANA - A LEUCINE-RICH REPEAT CLASS OF PLANT-DISEASE RESISTANCE GENES [J].
BENT, AF ;
KUNKEL, BN ;
DAHLBECK, D ;
BROWN, KL ;
SCHMIDT, R ;
GIRAUDAT, J ;
LEUNG, J ;
STASKAWICZ, BJ .
SCIENCE, 1994, 265 (5180) :1856-1860
[10]   The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid [J].
Bittner-Eddy, PD ;
Beynon, JL .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (03) :416-421