Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance

被引:50
作者
Andersson, M. [1 ]
Kiselev, A.
Oesterlund, L.
Palmqvist, A. E. C.
机构
[1] Chalmers Univ Technol, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden
[3] FOI NBC Def, Dept Environm & Protect, SE-90182 Umea, Sweden
关键词
D O I
10.1021/jp070284a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanosized titania having the rutile crystalline structure was synthesized at room temperature using a microemulsion-mediated system. The formed rutile particles had a diameter of 3 nm, which corresponds well with the droplet size of the water-in-oil microemulsion used for their preparation. The crystallinity was monitored by both X-ray diffraction (XRD) and electron diffraction, together with dark-field electron microscopy (TEM) and high-resolution TEM. The rutile had a high specific surface area (similar to 300 m(2)/g) according to N-2 adsorption and the BET equation. To our knowledge, this is the highest specific surface area ever reported for rutile. The rutile crystals aligned in a specific crystallographic direction forming elongated aggregates 200-1000 nm in size, as observed by TEM and high-resolution TEM. The titania formation was followed in situ using dynamic light scattering and UV-vis spectroscopy, and together with TEM and XRD performed on samples collected throughout the duration of the titania synthesis, the results gave support for a formation scheme involving the initial formation of amorphous titania followed by crystallization of rutile. The photocatalytic performance of the formed material was evaluated by in situ Fourier transform infrared spectroscopy and compared to that of a rutile sample having a lower specific surface area (similar to 40 m(2)/g). The TEM and formate adsorption experiments revealed that the high-surface-area rutile had a much higher fraction of (101) facets than the low-surface-area sample, which predominantly exposed (110) facets. In particular, a new bidentate formate (mu-formate) species bridge-bonded to the (101) facet could be identified with characteristic bands at 1547 and 1387 cm(-1). The photodegradation rate of this species was found to be similar to the mu-formate species on the (110) facet. However, the overall formate degradation rate was larger on the high-surface-area rutile sample because of a high concentration of the more readily photodegradable monodentate formate (eta(1)-formate) on that sample.
引用
收藏
页码:6789 / 6797
页数:9
相关论文
共 60 条
[1]   A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator [J].
Abe, R ;
Sayama, K ;
Domen, K ;
Arakawa, H .
CHEMICAL PHYSICS LETTERS, 2001, 344 (3-4) :339-344
[2]   Silver nanoparticle formation in microemulsions acting both as template and reducing agent [J].
Andersson, M ;
Pedersen, JS ;
Palmqvist, AEC .
LANGMUIR, 2005, 21 (24) :11387-11396
[3]   Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol [J].
Andersson, M ;
Österlund, L ;
Ljungström, S ;
Palmqvist, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (41) :10674-10679
[4]  
Baird C., 1998, ENVIRON CHEM
[5]   CARBON-MONOXIDE AND HYDROGEN DETECTION BY ANATASE MODIFICATION OF TITANIUM-DIOXIDE [J].
BIRKEFELD, LD ;
AZAD, AM ;
AKBAR, SA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1992, 75 (11) :2964-2968
[6]   MONODISPERSED COLLOIDAL METAL PARTICLES FROM NONAQUEOUS SOLUTIONS - CATALYTIC BEHAVIOR IN HYDROGENOLYSIS AND ISOMERIZATION OF HYDROCARBONS OF SUPPORTED PLATINUM PARTICLES [J].
BOUTONNET, M ;
KIZLING, J ;
TOUROUDE, R ;
MAIRE, G ;
STENIUS, P .
CATALYSIS LETTERS, 1991, 9 (5-6) :347-354
[7]   THE PREPARATION OF MONODISPERSE COLLOIDAL METAL PARTICLES FROM MICRO-EMULSIONS [J].
BOUTONNET, M ;
KIZLING, J ;
STENIUS, P .
COLLOIDS AND SURFACES, 1982, 5 (03) :209-225
[8]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[9]   INFRARED SPECTROSCOPIC IDENTIFICATION OF SPECIES ARISING FROM REACTIVE ADSORPTION OF CARBON OXIDES ON METAL-OXIDE SURFACES [J].
BUSCA, G ;
LORENZELLI, V .
MATERIALS CHEMISTRY, 1982, 7 (01) :89-126
[10]   Photoinduced reactivity of titanium dioxide [J].
Carp, O ;
Huisman, CL ;
Reller, A .
PROGRESS IN SOLID STATE CHEMISTRY, 2004, 32 (1-2) :33-177