We propose a novel intersubband laser based on transition between the ground-state heavy-hole subband (HH1) and light-hole subband (LH1) in a k-space region where the light-hole effective mass is inverted. The laser structure can be electrically pumped with a simple quantum cascade scheme. Our calculation shows that with only a small fraction of the carrier population in the upper subband (LH1), it is possible to achieve population inversion between the two subbands locally in K space where the light-hole effective mass is inverted. Optical gain in excess of 150/cm can be achieved with a pumping current density on the order to 100 A/cm(2) at the temperature of liquid nitrogen. (C) 1998 American Institute of Physics.