Proteasome Assembly Influences Interaction with Ubiquitinated Proteins and Shuttle Factors

被引:10
作者
Chandra, Abhishek [1 ]
Chen, Li [1 ]
Liang, Huiyan [1 ]
Madura, Kiran [1 ]
机构
[1] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA
基金
美国国家卫生研究院;
关键词
REGULATORY PARTICLE; SACCHAROMYCES-CEREVISIAE; CORE PARTICLE; MITOCHONDRIAL MORPHOLOGY; TERMINAL DOMAIN; SUBSTRATE ENTRY; BINDING PROTEIN; 20S PROTEASOMES; 26S PROTEASOME; SUBUNIT RPN11;
D O I
10.1074/jbc.M109.076786
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A major fraction of intracellular protein degradation is mediated by the proteasome. Successful degradation of these substrates requires ubiquitination and delivery to the proteasome followed by protein unfolding and disassembly of the multiubiquitin chain. Enzymes, such as Rpn11, dismantle multiubiquitin chains, and mutations can affect proteasome assembly and activity. We report that different rpn11 mutations can affect proteasome interaction with ubiquitinated proteins. Moreover, proteasomes are unstable in rpn11-1 and do not form productive interactions with multiubiquitinated proteins despite high levels in cell extracts. However, increased levels of ubiquitinated proteins were found associated with shuttle factors. In contrast to rpn11-1, proteasomes expressing a catalytically inactive mutant (rpn11(AXA)) were more stable and bound very high amounts of ubiquitinated substrates. Expression of the carboxyl-terminal domain of Rpn11 partially suppressed the growth and proteasome stability defects of rpn11-1. These results indicate that ubiquitinated substrates are preferentially delivered to intact proteasome.
引用
收藏
页码:8330 / 8339
页数:10
相关论文
共 40 条
[1]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[2]   UBA domains of DNA damage-inducible proteins interact with ubiquitin [J].
Bertolaet, BL ;
Clarke, DJ ;
Wolff, M ;
Watson, MH ;
Henze, M ;
Divita, G ;
Reed, SI .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (05) :417-422
[3]   Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center [J].
Biggins, S ;
Ivanovska, I ;
Rose, MD .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1331-1346
[4]   The base of the proteasome regulatory particle exhibits chaperone-like activity [J].
Braun, BC ;
Glickman, M ;
Kraft, R ;
Dahlmann, B ;
Kloetzel, PM ;
Finley, D ;
Schmidt, M .
NATURE CELL BIOLOGY, 1999, 1 (04) :221-226
[5]   Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly [J].
Chen, L ;
Shinde, U ;
Ortolan, TG ;
Madura, K .
EMBO REPORTS, 2001, 2 (10) :933-938
[6]   Rad23 promotes the targeting of proteolytic substrates to the proteasome [J].
Chen, L ;
Madura, K .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (13) :4902-4913
[7]   Saccharomyces cerevisiae Ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins [J].
Chuang, SM ;
Madura, K .
GENETICS, 2005, 171 (04) :1477-1484
[8]   Yeast UBL-UBA proteins have partially redundant functions in cell cycle control [J].
Diaz-Martinez, Laura A. ;
Kang, Yang ;
Walters, Kylie J. ;
Clarke, Duncan J. .
CELL DIVISION, 2006, 1 (1)
[9]   Proteasome subunit Rpn1 binds ubiquitin-like protein domains [J].
Elsasser, S ;
Gali, RR ;
Schwickart, M ;
Larsen, CN ;
Leggett, DS ;
Müller, B ;
Feng, MT ;
Tübing, F ;
Dittmar, GAG ;
Finley, D .
NATURE CELL BIOLOGY, 2002, 4 (09) :725-730
[10]   Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome [J].
Elsasser, S ;
Chandler-Militello, D ;
Müller, B ;
Hanna, J ;
Finley, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :26817-26822