Point matching under non-uniform distortions

被引:21
作者
Akutsu, T
Kanaya, K
Ohyama, A
Fujiyama, A
机构
[1] Univ Tokyo, Inst Med Sci, Ctr Human Genome, Minato Ku, Tokyo 1088639, Japan
[2] Mitsui Knowledge Ind Co Ltd, Dept Biosci Syst, Nakano Ku, Tokyo 1648555, Japan
[3] Natl Inst Genet, Mishima, Shizuoka 4118540, Japan
关键词
point matching; geometric matching; electrophoresis; NP-hard;
D O I
10.1016/S0166-218X(02)00282-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the pattern matching problem for points under non-uniform distortions, which arises from the analysis of two-dimensional (2-D) electrophoresis images. First, we provide a formal definition of the problem. Next, we prove that it is NP-hard in two (or more) dimensions. This proof is based on a reduction from planar 3SAT. Then we present a simple polynomial time algorithm for a special and one-dimensional case of the problem, which is based on dynamic programming. We also present a practical heuristic algorithm for identifying a match between two sets of spots in 2-D gel electrophoresis images obtained from genomic DNA. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 14 条
[1]   CONGRUENCE, SIMILARITY, AND SYMMETRIES OF GEOMETRIC OBJECTS [J].
ALT, H ;
MEHLHORN, K ;
WAGENER, H ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) :237-256
[2]   Melanie II - a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms [J].
Appel, RD ;
Vargas, JR ;
Palagi, PM ;
Walther, D ;
Hochstrasser, DF .
ELECTROPHORESIS, 1997, 18 (15) :2735-2748
[3]   Pattern matching for spatial point sets [J].
Cardoze, DE ;
Schulman, LJ .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :156-165
[4]   Matching Delaunay graphs [J].
Finch, AM ;
Wilson, RC ;
Hancock, ER .
PATTERN RECOGNITION, 1997, 30 (01) :123-140
[5]   A GENOMIC SCANNING METHOD FOR HIGHER ORGANISMS USING RESTRICTION SITES AS LANDMARKS [J].
HATADA, I ;
HAYASHIZAKI, Y ;
HIROTSUNE, S ;
KOMATSUBARA, H ;
MUKAI, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (21) :9523-9527
[6]  
Hoffmann F., 1998, Proceedings of the Fourteenth Annual Symposium on Computational Geometry, P231, DOI 10.1145/276884.276911
[7]  
Irani S., 1996, Proceedings of the Twelfth Annual Symposium on Computational Geometry, FCRC '96, P68, DOI 10.1145/237218.237240
[8]   TESTING APPROXIMATE SYMMETRY IN THE PLANE IS NP-HARD [J].
IWANOWSKI, S .
THEORETICAL COMPUTER SCIENCE, 1991, 80 (02) :227-262
[9]  
KANAYA K, 1988, GENOME INFORMATICS 1, P336
[10]   Drawing planar graphs using the canonical ordering [J].
Kant, G .
ALGORITHMICA, 1996, 16 (01) :4-32