In vivo corrosion of four magnesium alloys and the associated bone response

被引:2124
作者
Witte, F
Kaese, V
Haferkamp, H
Switzer, E
Meyer-Lindenberg, A
Wirth, CJ
Windhagen, H
机构
[1] Hannover Med Sch, Dept Orthopaed Surg, D-30625 Hannover, Germany
[2] Univ Hannover, Ctr Biomed Engn, D-30823 Garbsen, Germany
[3] Hannover Sch Vet Med, Small Anim Clin, D-30173 Hannover, Germany
关键词
D O I
10.1016/j.biomaterials.2004.09.049
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone-implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3557 / 3563
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1990, B27590 ASTM
[2]  
[Anonymous], 1934, La Press Med
[3]  
Grobner J., 2001, MAT DESIGN APPROACHE
[4]   3-DIMENSIONAL STRUCTURE OF RIBONUCLEASE-H FROM ESCHERICHIA-COLI [J].
KATAYANAGI, K ;
MIYAGAWA, M ;
MATSUSHIMA, M ;
ISHIKAWA, M ;
KANAYA, S ;
IKEHARA, M ;
MATSUZAKI, T ;
MORIKAWA, K .
NATURE, 1990, 347 (6290) :306-309
[5]  
LEONTIS TE, 1946, T AM I MIN MET ENG, V166, P265
[6]  
LOTHAR T, 2000, LABOR DIAGNOSE
[7]  
MAKAR GL, 1993, INT MATER REV, V38, P138, DOI 10.1179/095066093790326320
[9]  
McCord Carey P., 1942, INDUST MED [BELOIT], V11, P71
[10]   NOVEL ION SPECIFICITY OF A CARBOXYLATE CLUSTER MG(II) BINDING-SITE - STRONG CHARGE SELECTIVITY AND WEAK SIZE SELECTIVITY [J].
NEEDHAM, JV ;
CHEN, TY ;
FALKE, JJ .
BIOCHEMISTRY, 1993, 32 (13) :3363-3367