Decoherence in Josephson-junction qubits due to critical-current fluctuations

被引:124
作者
Van Harlingen, DJ
Robertson, TL
Plourde, BLT
Reichardt, PA
Crane, TA
Clarke, J
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW B | 2004年 / 70卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.70.064517
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compute the decoherence caused by 1/f fluctuations at low frequency f in the critical current I-0 of Josephson junctions incorporated into flux, phase, charge, and hybrid flux-charge superconducting quantum bits (qubits). The dephasing time tau(phi) scales as I-0/OmegaLambdaS(I0)(1/2)(1 Hz), where Omega/2pi is the energy-level splitting frequency, S-I0(1 Hz) is the spectral density of the critical-current noise at 1 Hz, and Lambda=\I(0)dOmega/OmegadI(0)\ is a parameter computed for given parameters for each type of qubit that specifies the sensitivity of the level splitting to critical-current fluctuations. Computer simulations show that the envelope of the coherent oscillations of any qubit after time t scales as exp(-t(2)/2tau(phi)(2)) when the dephasing due to critical-current noise dominates the dephasing from all sources of dissipation. We compile published results for fluctuations in the critical current of Josephson tunnel junctions fabricated with different technologies and a wide range in I-0 and area A, and show that their values of S-I0(1 Hz) scale to within a factor of 3 of [144(I-0/muA)(2)/(A/mum(2))](pA)(2)/Hz at 4.2 K. We empirically extrapolate S-I0(1/2)(1 Hz) to lower temperatures using a scaling T(K)/4.2. Using this result, we find that the predicted values of tau(phi) at 100 mK range from 0.8 to 12 mus, and are usually substantially longer than values measured experimentally at lower temperatures.
引用
收藏
页码:064517 / 1
页数:13
相关论文
共 32 条
[1]   Macroscopic resonant tunneling of magnetic flux [J].
Averin, DV ;
Friedman, JR ;
Lukens, JE .
PHYSICAL REVIEW B, 2000, 62 (17) :11802-11811
[2]   Coherent quantum dynamics of a superconducting flux qubit [J].
Chiorescu, I ;
Nakamura, Y ;
Harmans, CJPM ;
Mooij, JE .
SCIENCE, 2003, 299 (5614) :1869-1871
[3]  
CLEM JR, UNPUB
[4]  
COTTET, 2001, MACROSCOPIC QUANTUM, P111
[5]   Implementation of a combined charge-phase quantum bit in a superconducting circuit [J].
Cottet, A ;
Vion, D ;
Aassime, A ;
Joyez, P ;
Esteve, D ;
Devoret, MH .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 367 (1-4) :197-203
[6]   Reduction of 1/f noise in high-T-c dc superconducting quantum interference devices cooled in an ambient magnetic field [J].
Dantsker, E ;
Tanaka, S ;
Nilsson, PA ;
Kleiner, R ;
Clarke, J .
APPLIED PHYSICS LETTERS, 1996, 69 (26) :4099-4101
[7]   LOW-FREQUENCY FLUCTUATIONS IN SOLIDS - 1-F NOISE [J].
DUTTA, P ;
HORN, PM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :497-516
[8]   LOW-FREQUENCY NOISE IN LOW 1/F NOISE DC SQUIDS [J].
FOGLIETTI, V ;
GALLAGHER, WJ ;
KETCHEN, MB ;
KLEINSASSER, AW ;
KOCH, RH ;
RAIDER, SI ;
SANDSTROM, RL .
APPLIED PHYSICS LETTERS, 1986, 49 (20) :1393-1395
[9]   Quantum superposition of distinct macroscopic states [J].
Friedman, JR ;
Patel, V ;
Chen, W ;
Tolpygo, SK ;
Lukens, JE .
NATURE, 2000, 406 (6791) :43-46
[10]   Tunnel splittings for one-dimensional potential wells revisited [J].
Garg, A .
AMERICAN JOURNAL OF PHYSICS, 2000, 68 (05) :430-437