On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method

被引:119
作者
Frehse, J
Málek, J
Steinhauer, M
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Charles Univ Prague, Math Inst, Prague 18675 8, Czech Republic
[3] Univ Bonn, Math Seminar, D-53115 Bonn, Germany
关键词
incompressible fluid; power-law fluid; shear-dependent viscosity; existence; weak solution; Lipschitz approximation of W-1; W-p-functions;
D O I
10.1137/S0036141002410988
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with a system of partial differential equations describing a steady motion of an incompressible fluid with shear-dependent viscosity and present a new global existence result for p>2d/d+2. Here p is the coercivity parameter of the nonlinear elliptic operator related to the stress tensor and d is the dimension of the space. Lipschitz test functions, a subtle splitting of the level sets of the maximal functions for the velocity gradients, and a decomposition of the pressure are incorporated to obtain almost everywhere convergence of the velocity gradients.
引用
收藏
页码:1064 / 1083
页数:20
相关论文
共 42 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]  
Acerbi E., 1998, MAT INSTABILITIES CO, P1
[3]  
AMROUCHE C, 1994, CZECH MATH J, V44, P109
[4]  
[Anonymous], 2000, LECT NOTES MATH
[5]   YOUNG MEASURE-VALUED SOLUTIONS FOR NON-NEWTONIAN INCOMPRESSIBLE FLUIDS [J].
BELLOUT, H ;
BLOOM, F ;
NECAS, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (11-12) :1763-1803
[6]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[7]   Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems [J].
Dal Maso, G ;
Murat, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (3-4) :405-412
[8]  
Dibenedetto E, 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[9]   Non-linear elliptic systems with measure-valued right hand side [J].
Dolzmann, G ;
Hungerbuhler, N ;
Muller, S .
MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (04) :545-574
[10]  
Dolzmann G, 2000, J REINE ANGEW MATH, V520, P1