Li2O2 Wetting on the (110) Surface of RuO2, TiO2, and SnO2: An Initiating Force for Polycrystalline Growth

被引:23
作者
Geng, W. T. [1 ,2 ]
Ohno, T. [1 ]
机构
[1] Natl Inst Mat Sci, GREEN, Tsukuba, Ibaraki 3050044, Japan
[2] Univ Sci & Technol Beijing, Beijing 100083, Peoples R China
关键词
OXYGEN REDUCTION; LI-O-2; BATTERIES; LITHIUM; CARBON; OXIDE; EVOLUTION; GRAPHENE; CATHODES;
D O I
10.1021/jp508896s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a first-principles study on the initial deposition of Li2O2 on three rutile oxide surfaces, RuO2(110)-(1x1)-O, TiO2(110), and SnO2(110). The intermediate discharge product in a Liair battery, LiO2, is found to be less stable on all rutile surfaces and will be further reduced to Li2O2 through disproportionation reaction. For the first and second layers of deposited Li(2)O2, the adsorption energy is comparable to the cohesive energy of bulk Li2O2, suggesting Li2O2 will likely wet the oxide surfaces and grow into thin films rather than particles. Electronic structure analyses of interfaces demonstrate Li2O2/TiO2(110) is metallic and Li2O2/SnO2(110) is semiconducting with a bandgap of 0.2 eV, substantially smaller than in bulk Li2O2. The large lattice mismatch at these interfaces could create amorphousness of Li2O2 and grain boundaries might form abundantly thereafter, both of which can provide charge and ion transport channels needed for oxygen reduction and evolution reactions in Liair batteries. Therefore, coating nanostructured carbon cathode with thin films of TiO2 or employing mesoporous TiO2 nanostructures as cathode could possibly lead to the formation of low-resistance Li2O2 thin films and thereby enhance the rate capacity of Liair batteries.
引用
收藏
页码:1024 / 1031
页数:8
相关论文
共 44 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   The Importance of Nanometric Passivating Films on Cathodes for Li-Air Batteries [J].
Adams, Brian D. ;
Black, Robert ;
Radtke, Claudio ;
Williams, Zack ;
Mehdi, B. Layla ;
Browning, Nigel D. ;
Nazar, Linda F. .
ACS NANO, 2014, 8 (12) :12483-12493
[3]  
Black R., 2013, Angew. Chem. Int. Ed, V125, P410, DOI DOI 10.1002/ANGE201205354
[4]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries [J].
Gallant, Betar M. ;
Kwabi, David G. ;
Mitchell, Robert R. ;
Zhou, Jigang ;
Thompson, Carl V. ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2518-2528
[7]   Grain Boundary Induced Conductivity in Li2O2 [J].
Geng, W. T. ;
He, B. L. ;
Ohno, T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (48) :25222-25228
[8]   Stability of nanoscale co-precipitates in a superalloy: A combined first-principles and atom probe tomography study [J].
Geng, W. T. ;
Ping, D. H. ;
Gu, Y. F. ;
Cui, C. Y. ;
Harada, H. .
PHYSICAL REVIEW B, 2007, 76 (22)
[9]   Selective Coating of Anatase and Rutile TiO2 on Carbon via Ultrasound Irradiation: Mitigating Fuel Cell Catalyst Degradation [J].
George, P. P. ;
Pol, V. G. ;
Gedanken, A. ;
Gabashivili, A. ;
Cai, M. ;
Mance, A. M. ;
Feng, L. ;
Ruthkosky, M. S. .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2008, 5 (04)
[10]   THE PHENOMENON OF WETTING AT SOLID SOLID INTERFACE [J].
HABER, J ;
MACHEJ, T ;
CZEPPE, T .
SURFACE SCIENCE, 1985, 151 (01) :301-310