Microscopic derivation of the Bekenstein-Hawking entropy formula for non-extremal black holes

被引:128
作者
Sfetsos, K [1 ]
Skenderis, K
机构
[1] CERN, Div Theory, CH-1211 Geneva 23, Switzerland
[2] Katholieke Univ Leuven, Inst Theoret Phys, B-3001 Leuven, Belgium
关键词
non-extremal black holes; M-theory; singletons; gauged supergravity; Bekenstein-Hawking entropy formula; duality;
D O I
10.1016/S0550-3213(98)00023-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We derive the Bekenstein-Hawking entropy formula for four- and five-dimensional non-supersymmetric black holes (which include the Schwarzschild ones) by counting microscopic states. This is achieved by first showing that these black holes are U-dual to the three-dimensional black hole of Banados-Teitelboim-Zanelli and then counting microscopic states of the latter following Carlip's approach. Black holes higher than five dimensional are also considered. We discuss the connection of our approach to the D-brane picture. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:179 / 204
页数:26
相关论文
共 104 条
[1]   A CHERN-SIMONS ACTION FOR 3-DIMENSIONAL ANTI-DESITTER SUPERGRAVITY THEORIES [J].
ACHUCARRO, A ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1986, 180 (1-2) :89-92
[2]   GAUGED SUPERGRAVITY VACUA IN STRING THEORY [J].
ANTONIADIS, I ;
BACHAS, C ;
SAGNOTTI, A .
PHYSICS LETTERS B, 1990, 235 (3-4) :255-260
[3]   Intersection rules for p-branes [J].
Argurio, R ;
Englert, F ;
Houart, L .
PHYSICS LETTERS B, 1997, 398 (1-2) :61-68
[4]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[5]   BEYOND THE LARGE N LIMIT - NONLINEAR W-INFINITY AS SYMMETRY OF THE SL(2,R)/U(1) COSET MODEL [J].
BAKAS, I ;
KIRITSIS, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 :55-81
[6]   SPACE-TIME INTERPRETATION OF S-DUALITY AND SUPERSYMMETRY VIOLATIONS OF T-DUALITY [J].
BAKAS, I .
PHYSICS LETTERS B, 1995, 343 (1-4) :103-112
[7]   Edge states in gravity and black hole physics [J].
Balachandran, AP ;
Momen, A ;
Chandar, L .
NUCLEAR PHYSICS B, 1996, 461 (03) :581-596
[8]   CONSISTENCY OF STRING PROPAGATION ON CURVED SPACETIMES - AN SU(1,1) BASED COUNTEREXAMPLE [J].
BALOG, J ;
ORAIFEARTAIGH, L ;
FORGACS, P ;
WIPF, A .
NUCLEAR PHYSICS B, 1989, 325 (01) :225-241
[9]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[10]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525