Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface

被引:104
作者
Goto, S [1 ]
Yamano, M
Kinoshita, M
机构
[1] Kyoto Univ, Inst Geothermal Sci, Aso Volcanol Lab, Kumamoto 8691404, Japan
[2] Univ Tokyo, Earthquake Res Inst, Tokyo 113, Japan
[3] Japan Agcy Marine Earth Sci & Technol, Program Deep Sea Res, Yokosuka, Kanagawa, Japan
关键词
D O I
10.1029/2004JB003419
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
[1] Characteristics of thermal responses of sediment with vertical fluid movement to periodic temperature variation at the surface were examined using a one-dimensional analytical solution. The amplitude of the thermal response decays exponentially, and the phase is delayed linearly with increasing depth, but they depend on the direction and velocity of vertical fluid flow, thermal diffusivity of fluid-saturated sediment, and period of surface temperature variation. To examine general characteristics of the thermal response, we defined two nondimensional parameters related to thermal diffusivity of fluid-saturated sediment, vertical fluid flow velocity, period of the surface temperature variation, and specific penetration depth at which the amplitude of the thermal response decays to e(-1) of that at the surface. Analysis using these nondimensional parameters shows that there are three heat transport regimes for downward flow: ( 1) heat transport strongly governed by advection, ( 2) heat transport strongly governed by conduction, and ( 3) transition between these regimes. For upward flow, there are also three heat transport regimes: ( 1) balance of heat transports by advection and conduction, ( 2) heat transport strongly governed by conduction, and ( 3) transition between these regimes. The analytical solution is used to estimate the downward fluid velocity and thermal diffusivity of sediment from temperatures measured by long-term temperature monitoring at a site of seafloor hydrothermal circulation.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 34 条
[11]  
Fowler C., 1990, The solid Earth
[12]   Geothermal constraints on the hydrological regime of the TAG active hydrothermal mound, inferred from long-term monitoring [J].
Goto, S ;
Kinoshita, M ;
Matsubayashi, O ;
Von Herzen, RP .
EARTH AND PLANETARY SCIENCE LETTERS, 2002, 203 (01) :149-163
[13]   Detailed morphology of the TAG active hydrothermal mound: Insights into its formation and growth [J].
Humphris, SE ;
Kleinrock, MC .
GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (23) :3443-3446
[14]   THE INTERNAL STRUCTURE OF AN ACTIVE SEA-FLOOR MASSIVE SULFIDE DEPOSIT [J].
HUMPHRIS, SE ;
HERZIG, PM ;
MILLER, DJ ;
ALT, JC ;
BECKER, K ;
BROWN, D ;
BRUGMANN, G ;
CHIBA, H ;
FOUQUET, Y ;
GEMMELL, JB ;
GUERIN, G ;
HANNINGTON, MD ;
HOLM, NG ;
HONNOREZ, JJ ;
ITURRINO, GJ ;
KNOTT, R ;
LUDWIG, R ;
NAKAMURA, K ;
PETERSEN, S ;
REYSENBACH, AL ;
RONA, PA ;
SMITH, S ;
STURZ, AA ;
TIVEY, MK ;
ZHAO, X .
NATURE, 1995, 377 (6551) :713-716
[15]   Sub-bottom temperature anomalies detected by long-term temperature monitoring at the TAG hydrothermal mound [J].
Kinoshita, M ;
Matsubayashi, O ;
VonHerzen, RP .
GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (23) :3467-3470
[16]   Structural control on seafloor hydrothermal activity at the TAG active mound [J].
Kleinrock, MC ;
Humphris, SE .
NATURE, 1996, 382 (6587) :149-153
[17]   Large groundwater inputs to coastal waters revealed by Ra-226 enrichments [J].
Moore, WS .
NATURE, 1996, 380 (6575) :612-614
[18]   BLACK SMOKERS, MASSIVE SULFIDES AND VENT BIOTA AT THE MID-ATLANTIC RIDGE [J].
RONA, PA ;
KLINKHAMMER, G ;
NELSEN, TA ;
TREFRY, JH ;
ELDERFIELD, H .
NATURE, 1986, 321 (6065) :33-37
[19]   Temporal variations in diffuse hydrothermal flow at TAG [J].
Schultz, A ;
Dickson, P ;
Elderfield, H .
GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (23) :3471-3474
[20]  
SCHULTZ A, 1992, J GEOPHYS RES, V97, P12229