Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy

被引:174
作者
Arbi, K. [1 ]
Rojo, J. M. [1 ]
Sanz, J. [1 ]
机构
[1] CSIC, ICMM, E-28049 Madrid, Spain
关键词
powder solid state reaction; X-ray method; NMR spectroscopy; ionic conductivity; batteries;
D O I
10.1016/j.jeurceramsoc.2007.02.118
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Titanium-based Nasicon-type Compounds with formula Li1+xTi2-xAl(PO4)(3) and LiTi2-Zr-x(PO4), have been prepared and studied with X-ray Diffraction (XRD). Nuclear Magnetic Resonance (NMR) and Electric Impedance (EI) techniques. From the analysis of the Li-7 and (31) NMR spectra, cation distribution and Li mobility have been deduced. The substitution of Ti4+ by a large Zr4+, cation expands the unit cell but the grain interior conductivity remains near that of the parent LiTi2(PO4)3 compound. However, substitution of Ti4+ by a smaller Al3+ cation reduces the unit cell dimensions of the Nasicon framework, but enhances about three orders of magnitude the conductivity. In Zr doped samples, the expansion of the unit cell destabilizes Li coordination at M-1 sites; however, in Al doped samples, the increment of Li amount enhances Li-Li repulsions. In both cases. creation of vacancies at M-1 sites increases Li mobility. (c) 2007 Elsevier Ltd. All right reserved.
引用
收藏
页码:4215 / 4218
页数:4
相关论文
共 12 条
[1]   STRUCTURE AND THERMAL-EXPANSION OF LIGE2 (PO4)3 [J].
ALAMI, M ;
BROCHU, R ;
SOUBEYROUX, JL ;
GRAVEREAU, P ;
LEFLEM, G ;
HAGENMULLER, P .
JOURNAL OF SOLID STATE CHEMISTRY, 1991, 90 (02) :185-193
[2]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[3]   Non-Arrhenius conductivity in the fast lithium conductor Li1.2Ti1.8Al0.2(PO4)3:: A 7Li NMR and electric impedance study -: art. no. 094302 [J].
Arbi, K ;
Tabellout, M ;
Lazarraga, MG ;
Rojo, JM ;
Sanz, J .
PHYSICAL REVIEW B, 2005, 72 (09)
[4]   Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7.: A parallel NMR and electric impedance study [J].
Arbi, K ;
Mandal, S ;
Rojo, JM ;
Sanz, J .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1091-1097
[5]   Lithium location in NASICON-type Li+ conductors by neutron diffraction.: I.: Triclinic α′-LiZr2(PO4)3 [J].
Catti, M ;
Stramare, S ;
Ibberson, R .
SOLID STATE IONICS, 1999, 123 (1-4) :173-180
[6]   FAST NA+-ION TRANSPORT IN SKELETON STRUCTURES [J].
GOODENOUGH, JB ;
HONG, HYP ;
KAFALAS, JA .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :203-220
[7]   Sodium mobility in the NASICON series Na1+xZr2-xInx(PO4)3 [J].
Losilla, ER ;
Aranda, MAG ;
Bruque, S ;
Sanz, J ;
París, MA ;
Campo, J ;
West, AR .
CHEMISTRY OF MATERIALS, 2000, 12 (08) :2134-2142
[8]   Reversible triclinic-rhombohedral phase transition in LiHf2(PO4)(3): Crystal structures from neutron powder diffraction [J].
Losilla, ER ;
Aranda, MAG ;
MartinezLara, M ;
Bruque, S .
CHEMISTRY OF MATERIALS, 1997, 9 (07) :1678-1685
[9]  
Morin E, 1997, EUR J SOL STATE INOR, V34, P947
[10]   Review of crystalline lithium-ion conductors suitable for high temperature battery applications [J].
Robertson, AD ;
West, AR ;
Ritchie, AG .
SOLID STATE IONICS, 1997, 104 (1-2) :1-11