Insulin receptor substrate 1 regulation of sarco-endoplasmic reticulum calcium ATPase 3 in insulin-secreting β-cells

被引:37
作者
Borge, PD
Wolf, BA
机构
[1] Childrens Hosp Philadelphia, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Philadelphia, PA 19104 USA
关键词
D O I
10.1074/jbc.M209521200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have previously characterized an insulin receptor substrate 1 (IRS-1)-overexpressing beta-cell line. These beta-cells demonstrated cytosolic Ca2+ levels compared with wildtype and vector controls. This effect of IRS-1 may be mediated via an interaction with the sarco-endoplasmic reticulum calcium ATPase (SERCA). Here we demonstrate that IRS-1 and IRS-2 localize to an endoplasmic reticulum (ER)-enriched fraction in beta-cells using subcellular fractionation. We also observe co-localization of both IRS-1 and IRS-2 with ER marker proteins using immunofluorescent confocal microscopy. Furthermore, immuno-electron microscopy studies confirm that IRS-1 and SERCA3b localize to vesicles derived from the ER. In Chinese hamster ovary-T (CHO-T) cells transiently transfected with SERCA3b alone or together with IRS-1, SERCA3b co-immunoprecipitates with IRS-1. This interaction is enhanced with insulin treatment. SERCA3b also co-immunoprecipitates with IRS-1 in wild-type and IRS-1-overexpressing beta-cell lines. Ca2+ uptake in ER-enriched fractions prepared from wild-type and IRS-1-overexpressing cell lines shows no significant difference, indicating that the previously observed decrease in Ca2+ uptake by IRS-1-overexpressing cells is not the result of a defect in SERCA. Treatment of wild-type beta-cells with thapsigargin, an inhibitor of SERCA, resulted in an increase in glucose-stimulated fractional insulin secretion similar to that observed in IRS-1-overexpressing cells. The colocalization of IRS proteins and SERCA in the ER of beta-interact with one another. Co-immunoprecipitation of IRS-1 and SERCA in CHO-T cells and beta-cells confirms that these proteins do indeed interact directly. Pharmacological inhibition of SERCA in beta-cells results in enhanced secretion of insulin. Taken together, our data suggest that interaction between IRS proteins and SERCA is an important regulatory step in insulin secretion.
引用
收藏
页码:11359 / 11368
页数:10
相关论文
共 46 条
[1]   Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart [J].
Algenstaedt, PM ;
Antonetti, DA ;
Yaffe, MB ;
Kahn, CR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (38) :23696-23702
[2]   Different subcellular distribution and regulation of expression of insulin receptor substrate (IRS)-3 from those of IRS-1 and IRS-2 [J].
Anai, O ;
Ono, H ;
Funaki, M ;
Fukushima, Y ;
Inukai, K ;
Ogihara, T ;
Sakoda, H ;
Onishi, Y ;
Yazaki, Y ;
Kikuchi, M ;
Oka, Y ;
Asano, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (45) :29686-29692
[3]   CLONING OF THE MOUSE INSULIN-RECEPTOR SUBSTRATE-1 (IRS-1) GENE AND COMPLETE SEQUENCE OF MOUSE IRS-1 [J].
ARAKI, E ;
HAAG, BL ;
KAHN, CR .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1994, 1221 (03) :353-356
[4]   Insulin-stimulated insulin secretion in single pancreatic beta cells [J].
Aspinwall, CA ;
Lakey, JRT ;
Kennedy, RT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (10) :6360-6365
[5]   Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β-cells [J].
Aspinwall, CA ;
Qian, WJ ;
Roper, MG ;
Kulkarni, RN ;
Kahn, CR ;
Kennedy, RT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22331-22338
[6]  
Bonner-Weir S, 1999, DIABETES, V48, pA3
[7]   Intracellular localization of phosphatidylinositide 3-kinase and insulin receptor substrate-1 in adipocytes: Potential involvement of a membrane skeleton [J].
Clark, SF ;
Martin, S ;
Carozzi, AJ ;
Hill, MM ;
James, DE .
JOURNAL OF CELL BIOLOGY, 1998, 140 (05) :1211-1225
[8]   Release of insulin receptor substrate proteins from an intracellular complex coincides with the development of insulin resistance [J].
Clark, SF ;
Molero, JC ;
James, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (06) :3819-3826
[9]  
COLCA JR, 1982, J BIOL CHEM, V257, P7223
[10]   K+ channels: Generating excitement in pancreatic beta-cells [J].
Dukes, ID ;
Philipson, LH .
DIABETES, 1996, 45 (07) :845-853