Probing dark energy with supernovae: Exploiting complementarity with the cosmic microwave background

被引:67
作者
Frieman, JA
Huterer, D
Linder, EV
Turner, MS
机构
[1] Univ Chicago, Dept Astron & Astrophys, Ctr Cosmol Phys, Chicago, IL 60637 USA
[2] NASA, Fermilab Astrophys Ctr, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA
[3] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA
[5] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA
关键词
D O I
10.1103/PhysRevD.67.083505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A primary goal for cosmology and particle physics over the coming decade will be to unravel the nature of the dark energy that drives the accelerated expansion of the Universe. In particular, the determination of the equation-of-state of dark energy wequivalent top/rho and its time variation dw/dz will be critical for developing a theoretical understanding of the new physics behind this phenomenon. Type Ia supernovae (SNe) and cosmic microwave background (CMB) anisotropy are each sensitive to the dark energy equation of state. SNe alone can determine w(z) with some precision, while CMB anisotropy alone cannot because of a strong degeneracy between the matter density Omega(M) and w. However, we show that the Planck CMB mission can significantly improve the power of a deep SNe survey to probe w and especially dw/dz. Because CMB constraints are nearly orthogonal to SNe constraints in the Omega(M)-w plane, for constraining w(z) Planck is more useful than precise determination of Omega(M). We discuss how the CMB/SNe complementarity impacts strategies for the redshift distribution of a supernova survey to determine w(z) and conclude that a well-designed sample should include a substantial number of supernovae out to redshifts zsimilar to2.
引用
收藏
页数:11
相关论文
共 51 条
[1]  
[Anonymous], 1983, The Very Early Universe
[2]   Constraints on cosmological parameters from MAXIMA-1 [J].
Balbi, A ;
Ade, P ;
Bock, J ;
Borrill, J ;
Boscaleri, A ;
De Bernardis, P ;
Ferreira, PG ;
Hanany, S ;
Hristov, V ;
Jaffe, AH ;
Lee, AT ;
Oh, S ;
Pascale, E ;
Rabii, B ;
Richards, RL ;
Smoot, GF ;
Stompor, R ;
Winant, CD ;
Wu, JHP .
ASTROPHYSICAL JOURNAL, 2000, 545 (01) :L1-L4
[3]  
BASA S, SNOWM 2001 WORKSH FU
[4]   Current constraints on the dark energy equation of state [J].
Bean, R ;
Melchiorri, A .
PHYSICAL REVIEW D, 2002, 65 (04)
[5]   Cosmological constraints from Archeops [J].
Benoît, A ;
Ade, P ;
Amblard, A ;
Ansari, R ;
Aubourg, É ;
Bargot, S ;
Bartlett, JG ;
Bernard, JP ;
Bhatia, RS ;
Blanchard, A ;
Bock, JJ ;
Boscalerilo, A ;
Bouchet, FR ;
Bourrachot, A ;
Camus, P ;
Couchot, E ;
de Bernardis, P ;
Delabrouille, J ;
Désert, EX ;
Doré, O ;
Douspis, M ;
Dumoulin, L ;
Dupac, X ;
Filliatre, P ;
Fosalba, P ;
Ganga, K ;
Gannaway, E ;
Gautier, B ;
Giard, A ;
Giraud-Héraud, Y ;
Gispert, R ;
Guglielmi, L ;
Hamilton, JC ;
Hanany, S ;
Henrot-Versillé, S ;
Kaplan, J ;
Lagache, G ;
Lamarre, JM ;
Lange, AE ;
Macías-Pérez, JE ;
Madet, K ;
Maffei, B ;
Magneville, C ;
Marrone, DP ;
Masi, S ;
Mayet, F ;
Murphy, A ;
Naraghi, E ;
Nati, F ;
Patanchon, G .
ASTRONOMY & ASTROPHYSICS, 2003, 399 (03) :L25-L30
[6]   Is the dark matter a solid? art. no. 043505 [J].
Bucher, M ;
Spergel, D .
PHYSICAL REVIEW D, 1999, 60 (04)
[7]   Cosmological imprint of an energy component with general equation of state [J].
Caldwell, RR ;
Dave, R ;
Steinhardt, PJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1582-1585
[8]   Quintessence and the rest of the world: Suppressing long-range interactions [J].
Carroll, SM .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3067-3070
[9]  
CARROLL SM, ASTROPH0107571
[10]   Dynamical Lambda models of structure formation [J].
Coble, K ;
Dodelson, S ;
Frieman, JA .
PHYSICAL REVIEW D, 1997, 55 (04) :1851-1859