Sequential quadratic programming for large-scale nonlinear optimization

被引:187
作者
Boggs, PT [1 ]
Tolle, JW
机构
[1] Sandia Natl Labs, Comp Sci & Math Res Dept, Livermore, CA 94550 USA
[2] Univ N Carolina, Dept Operat Res & Math, Chapel Hill, NC 27514 USA
关键词
sequential quadratic programming; nonlinear optimization; Newton methods; interior-point methods; local; trust-region methods convergence; global convergence;
D O I
10.1016/S0377-0427(00)00429-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The sequential quadratic programming (SQP) algorithm has been one of the most successful general methods for solving nonlinear constrained optimization problems. We provide an introduction to the general method and show its relationship to recent developments in interior-point approaches, emphasizing large-scale aspects. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 21 条
  • [1] [Anonymous], B SOC MAT MEXICANA
  • [2] [Anonymous], ACTA NUMERICA 1992
  • [3] A REDUCED HESSIAN METHOD FOR LARGE-SCALE CONSTRAINED OPTIMIZATION
    BIEGLER, LT
    NOCEDAL, J
    SCHMID, C
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (02) : 314 - 347
  • [4] Boggs P.T., 2008, ACTA NUMER, V4, P1, DOI [DOI 10.1017/S0962492900002518, 10.1017/s0962492900002518]
  • [5] An interior point method for general large-scale quadratic programming problems
    Boggs, PT
    Domich, PD
    Rogers, JE
    [J]. ANNALS OF OPERATIONS RESEARCH, 1996, 62 : 419 - 437
  • [6] A practical algorithm for general large scale nonlinear optimization problems
    Boggs, PT
    Kearsley, AJ
    Tolle, JW
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) : 755 - 778
  • [7] ON THE LOCAL CONVERGENCE OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    BOGGS, PT
    TOLLE, JW
    WANG, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (02) : 161 - 171
  • [8] A global convergence analysis of an algorithm for large-scale nonlinear optimization problems
    Boggs, PT
    Kearsley, AJ
    Tolle, JW
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) : 833 - 862
  • [9] BYRD RH, 1998, 9602 OTC NW U
  • [10] CHAMBERLAIN RM, 1982, MATH PROGRAM STUD, V16, P1