Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate

被引:73
作者
Hung, Chun-Hsiung [1 ]
Lee, Kuo-Shing
Cheng, Lu-Hsiu
Huang, Yu-Hsin
Lin, Ping-Jei
Chang, Jo-Shu
机构
[1] Natl Chung Hsing Univ, Dept Environm Engn, Taichung 402, Taiwan
[2] Cent Taiwan Univ Sci & Technol, Dept Safety Hlth & Environm Engn, Taichung, Taiwan
[3] Feng Chia Univ, Dept Chem Engn, Taichung 407, Taiwan
[4] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
关键词
fermentative hydrogen production; granular sludge; bioreactor design; bacterial community structure; fluorescence in situ hybridization;
D O I
10.1007/s00253-007-0854-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fermentative H-2 production microbial structure in an agitated granular sludge bed bioreactor was analyzed using fluorescence in situ hybridization (FISH) and polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE). This hydrogen-producing system was operated at four different hydraulic retention times (HRTs) of 4, 2, 1, and 0.5 h and with an influent glucose concentration of 20 g chemical oxygen demand/l. According to the PCR-DGGE analysis, bacterial community structures were mainly composed of Clostridium sp. (possibly Clostridium pasteurianum), Klebsiella oxytoca, and Streptococcus sp. Significant increase of Clostridium/ total cell ratio (68%) was observed when the reactor was operated under higher influent flow rate. The existence of Streptococcus sp. in the reactor became more important when operated under a short HRT as indicated by the ratio of Streptococcus probe-positive cells to Clostridium probe-positive cells changing from 21% (HRT 4 h) to 38% (HRT 0.5 h). FISH images suggested that Streptococcus cells probably acted as seeds for self- flocculated granule formation. Furthermore, combining the inspections with hydrogen production under different HRTs and their corresponding FISH analysis indicated that K oxytoca did not directly contribute to H-2 production but possibly played a role in consuming O-2 to create an anaerobic environment for the hydrogen-producing Clostridium.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 32 条
[1]   Blofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production [J].
Ahn, Y ;
Park, EJ ;
Oh, YK ;
Park, S ;
Webster, G ;
Weightman, AJ .
FEMS MICROBIOLOGY LETTERS, 2005, 249 (01) :31-38
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   In situ methods for assessment of microorganisms and their activities [J].
Amann, R ;
Kuhl, M .
CURRENT OPINION IN MICROBIOLOGY, 1998, 1 (03) :352-358
[4]  
[Anonymous], 1995, STANDARD METHODS EXA
[5]   Biohydrogen production using an up-flow anaerobic sludge blanket reactor [J].
Chang, FY ;
Lin, CY .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (01) :33-39
[6]  
Chen CC, 2001, APPL MICROBIOL BIOT, V57, P56
[7]   Hydrogen production by biological processes: a survey of literature [J].
Das, D ;
Veziroglu, TN .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (01) :13-28
[8]   Characterization of a hydrogen-producing granular sludge [J].
Fang, HHP ;
Liu, H ;
Zhang, T .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 78 (01) :44-52
[9]  
Franks AH, 1998, APPL ENVIRON MICROB, V64, P3336
[10]   Biological hydrogen production in suspended and attached growth anaerobic reactor systems [J].
Gavala, Hariklia N. ;
Skiadas, Ioannis V. ;
Ahring, Birgitte K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (09) :1164-1175