Carbon hollow nanospheres from chlorination of ferrocene

被引:54
作者
Katcho, Nebil A.
Urones-Garrote, Esteban
Avila-Brande, David
Gomez-Herrero, Adrian
Urbonaite, Sigita
Csillag, Stefan
Lomba, Enrique
Agullo-Rueda, Fernando
Landa-Canovas, Angel R.
Otero-Diaz, L. Carlos
机构
[1] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain
[2] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Inorgan, E-28040 Madrid, Spain
[3] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain
[4] Univ Complutense Madrid, Ctr Microscopia, E-28040 Madrid, Spain
[5] Univ Stockholm, Dept Struct Chem, S-10691 Stockholm, Sweden
[6] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden
关键词
D O I
10.1021/cm062997w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The chlorination of ferrocene at 900 degrees C yields very interesting carbon hollow nanospheres (CHNSs) with diameters of similar to 50-150 nm and similar to 12-25 nm thick walls. X-ray energy-dispersive spectroscopy shows no traces of chlorine or iron and the pi*/sigma* ratio of the carbon bonding was quantified by electron energy-loss spectroscopy with 80% sp(2) (100% sp(2) for pure graphite). Energy-filtered transmission electron microscopy has been used to establish the hollow nature of the CHNSs by thickness mapping. Electron energy loss spectroscopy, high-resolution TEM, and Raman microspectroscopy techniques have stated that the CHNS carbon walls are composed of disordered and independent curved graphene nanoflakes similar to 3-4 nm long that tend to graphitize with longer reaction times.
引用
收藏
页码:2304 / 2309
页数:6
相关论文
共 34 条
[1]   Electron microscopy characterization of nanostructured carbon obtained from chlorination of metallocenes and metal carbides [J].
Avila-Brande, David ;
Urones-Garrote, Esteban ;
Katcho, Nebil A. ;
Lomba, Enrique ;
Gomez-Herrero, Adrian ;
Landa-Canovas, Angel R. ;
Otero-Diaz, L. Carlos .
MICRON, 2007, 38 (04) :335-345
[2]  
AVILABRANDE D, 2006, MICRON, V44, P753
[3]   Carbon nanotube films as electron field emitters [J].
Bonard, JM ;
Croci, M ;
Klinke, C ;
Kurt, R ;
Noury, O ;
Weiss, N .
CARBON, 2002, 40 (10) :1715-1728
[4]   Carbide-derived nanoporous carbon and novel core-shell nanowires [J].
Chen, XQ ;
Cantrell, DR ;
Kohlhaas, K ;
Stankovich, S ;
Ibers, JA ;
Jaroniec, M ;
Gao, HS ;
Li, XD ;
Ruoff, RS .
CHEMISTRY OF MATERIALS, 2006, 18 (03) :753-758
[5]   Polymerization of a confined π-system:: Chemical synthesis of tetrahedral amorphous carbon nanoballs from graphitic carbon nanocapsules [J].
Chu, CC ;
Hwang, GL ;
Chiou, JW ;
Pong, WT ;
Lin, CL ;
Tsai, CY ;
Lin, HM ;
Chang, YC ;
Chang, CS ;
Hsu, AH ;
Huang, WL ;
Guo, JH ;
Chen, PH ;
Luh, TY .
ADVANCED MATERIALS, 2005, 17 (22) :2707-+
[6]   Experimental and theoretical evidence for the magic angle in transmission electron energy loss spectroscopy [J].
Daniels, H ;
Brown, A ;
Scott, A ;
Nichells, T ;
Rand, B ;
Brydson, R .
ULTRAMICROSCOPY, 2003, 96 (3-4) :523-534
[7]   Microporous carbon derived from boron carbide [J].
Dash, RK ;
Nikitin, A ;
Gogotsi, Y .
MICROPOROUS AND MESOPOROUS MATERIALS, 2004, 72 (1-3) :203-208
[8]   Synthesis of graphite by chlorination of iron carbide at moderate temperatures [J].
Dimovski, S ;
Nikitin, A ;
Ye, HH ;
Gogotsi, Y .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (02) :238-243
[9]   Phonons in carbon nanotubes [J].
Dresselhaus, MS ;
Eklund, PC .
ADVANCES IN PHYSICS, 2000, 49 (06) :705-814
[10]  
Egerton R. F., 1996, ELECT ENERGY LOSS SP