We present a wrapper-based approach to estimate and control the false discovery rate for peptide identifications using the outputs from multiple commercially available MS/MS search engines. Features of the approach include the flexibility to combine output from multiple search engines with sequence and spectral derived features in a flexible classification model to produce a score associated with correct peptide identifications. This classification model score from a reversed database search is taken as the null distribution for estimating p-values and false discovery rates using a simple and established statistical procedure. Results from 10 analyses of rat sera on an LTQ-FT mass spectrometer indicate that the method is well calibrated for controlling the proportion of false positives in a set of reported peptide identifications while correctly identifying more peptides than rule-based methods using one search engine alone. Keywords: peptide identification center dot false discovery rate center dot Sequest center dot X! Tandem center dot statistical significance center dot proteomics
机构:
Univ Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, GermanyUniv Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, Germany
Claus, R
;
Lübbert, M
论文数: 0引用数: 0
h-index: 0
机构:
Univ Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, GermanyUniv Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, Germany
机构:
Univ Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, GermanyUniv Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, Germany
Claus, R
;
Lübbert, M
论文数: 0引用数: 0
h-index: 0
机构:
Univ Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, GermanyUniv Freiburg, Med Ctr, Dept Internal Med 1, Div Hematol Oncol, D-79106 Freiburg, Germany