Generation of Endoderm-Derived Human Induced Pluripotent Stem Cells from Primary Hepatocytes

被引:184
作者
Liu, Hua [1 ]
Ye, Zhaohui [1 ]
Kim, Yonghak [1 ]
Sharkis, Saul [1 ]
Jang, Yoon-Young [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Baltimore, MD 21231 USA
基金
美国国家卫生研究院;
关键词
HEPATOCELLULAR-CARCINOMA; EFFICIENT; METHYLATION; MODEL;
D O I
10.1002/hep.23626
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Recent advances in induced pluripotent stem (iPS) cell research have significantly changed our perspective on regenerative medicine. Patient-specific iPS cells have been derived not only for disease modeling but also as sources for cell replacement therapy. However, there have been insufficient data to prove that iPS cells are functionally equivalent to human embryonic stem (hES) cells or are safer than hES cells. There are several important issues that need to be addressed, and foremost are the safety and efficacy of human iPS cells of different origins. Human iPS cells have been derived mostly from cells originating from mesoderm and in a few cases from ectoderm. So far, there has been no report of endoderm-derived human iPS cells, and this has prevented comprehensive comparative investigations of the quality of human iPS cells of different origins. Here we show for the first time reprogramming of human endoderm-derived cells (i.e., primary hepatocytes) to pluripotency. Hepatocyte-derived iPS cells appear indistinguishable from hES cells with respect to colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, and differentiation potential in embryoid body formation and teratoma assays. In addition, these cells are able to directly differentiate into definitive endoderm, hepatic progenitors, and mature hepatocytes. Conclusion: The technology to develop endoderm-derived human iPS cell lines, together with other established cell lines, will provide a foundation for elucidating the mechanisms of cellular reprogramming and for studying the safety and efficacy of differentially originated human iPS cells for cell therapy. For the study of liver disease pathogenesis, this technology also provides a potentially more amenable system for generating liver disease-specific iPS cells. (HEPATOLOGY 2010;51:1810-1819)
引用
收藏
页码:1810 / 1819
页数:10
相关论文
共 27 条
[1]   Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes [J].
Aasen, Trond ;
Raya, Angel ;
Barrero, Maria J. ;
Garreta, Elena ;
Consiglio, Antonella ;
Gonzalez, Federico ;
Vassena, Rita ;
Bilic, Josipa ;
Pekarik, Vladimir ;
Tiscornia, Gustavo ;
Edel, Michael ;
Boue, Stephanie ;
Izpisua Belmonte, Juan Carlos .
NATURE BIOTECHNOLOGY, 2008, 26 (11) :1276-1284
[2]  
Agarwal S, 2008, STEM CELLS, V26, P1117, DOI 10.1634/stemcells.2007-1102
[3]   Generation of pluripotent stem cells from adult mouse liver and stomach cells [J].
Aoi, Takashi ;
Yae, Kojiro ;
Nakagawa, Masato ;
Ichisaka, Tomoko ;
Okita, Keisuke ;
Takahashi, Kazutoshi ;
Chiba, Tsutomu ;
Yamanaka, Shinya .
SCIENCE, 2008, 321 (5889) :699-702
[4]   Bi-allelic inactivation of TCF1 in hepatic adenomas [J].
Bluteau, O ;
Jeannot, E ;
Bioulac-Sage, P ;
Marqués, JM ;
Blanc, JF ;
Bui, H ;
Beaudoin, JC ;
Franco, D ;
Balabaud, C ;
Laurent-Puig, P ;
Zucman-Rossi, J .
NATURE GENETICS, 2002, 32 (02) :312-315
[5]   Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells [J].
Chan, Elayne M. ;
Ratanasirintrawoot, Sutheera ;
Park, In-Hyun ;
Manos, Philip D. ;
Loh, Yuin-Han ;
Huo, Hongguang ;
Miller, Justine D. ;
Hartung, Odelya ;
Rho, Junsung ;
Ince, Tan A. ;
Daley, George Q. ;
Schlaeger, Thorsten M. .
NATURE BIOTECHNOLOGY, 2009, 27 (11) :1033-U100
[6]   Induced Pluripotent Stem Cells and Embryonic Stem Cells Are Distinguished by Gene Expression Signatures [J].
Chin, Mark H. ;
Mason, Mike J. ;
Xie, Wei ;
Volinia, Stefano ;
Singer, Mike ;
Peterson, Cory ;
Ambartsumyan, Gayane ;
Aimiuwu, Otaren ;
Richter, Laura ;
Zhang, Jin ;
Khvorostov, Ivan ;
Ott, Vanessa ;
Grunstein, Michael ;
Lavon, Neta ;
Benvenisty, Nissim ;
Croce, Carlo M. ;
Clark, Amander T. ;
Baxter, Tim ;
Pyle, April D. ;
Teitell, Mike A. ;
Pelegrini, Matteo ;
Plath, Kathrin ;
Lowry, William E. .
CELL STEM CELL, 2009, 5 (01) :111-123
[7]   Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming [J].
Deng, Jie ;
Shoemaker, Robert ;
Xie, Bin ;
Gore, Athurva ;
LeProust, Emily M. ;
Antosiewicz-Bourget, Jessica ;
Egli, Dieter ;
Maherali, Nimet ;
Park, In-Hyun ;
Yu, Junying ;
Daley, George Q. ;
Eggan, Kevin ;
Hochedlinger, Konrad ;
Thomson, James ;
Wang, Wei ;
Gao, Yuan ;
Zhang, Kun .
NATURE BIOTECHNOLOGY, 2009, 27 (04) :353-360
[8]   Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts [J].
Doi, Akiko ;
Park, In-Hyun ;
Wen, Bo ;
Murakami, Peter ;
Aryee, Martin J. ;
Irizarry, Rafael ;
Herb, Brian ;
Ladd-Acosta, Christine ;
Rho, Junsung ;
Loewer, Sabine ;
Miller, Justine ;
Schlaeger, Thorsten ;
Daley, George Q. ;
Feinberg, Andrew P. .
NATURE GENETICS, 2009, 41 (12) :1350-U123
[9]   Direct reprogramming of human neural stem cells by OCT4 [J].
Kim, Jeong Beom ;
Greber, Boris ;
Arauzo-Bravo, Marcos J. ;
Meyer, Johann ;
Park, Kook In ;
Zaehres, Holm ;
Schoeler, Hans R. .
NATURE, 2009, 461 (7264) :649-U93
[10]   Genetics of hepatocellular tumors [J].
Laurent-Puig, P. ;
Zucman-Rossi, J. .
ONCOGENE, 2006, 25 (27) :3778-3786