virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance

被引:129
作者
Detweiler, CS [1 ]
Monack, DM [1 ]
Brodsky, IE [1 ]
Mathew, H [1 ]
Falkow, S [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA
关键词
D O I
10.1046/j.1365-2958.2003.03455.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salmonella must express and deploy a type III secretion system located in Salmonella pathogenicity island 2 (SPI-2) in order to survive in host phagocytic vacuoles and to cause systemic infection in mouse models of typhoid fever. A genome-wide approach to screening for Salmonella genes that are transcriptionally co-regulated in vitro with SPI-2 genes was used to identify bacterial loci that might function in a mouse model of systemic disease. Strains with mutations in three SPI-2 co-expressed genes were constructed and tested for their ability to cause disease in mice. We found that virK, a homologue of a Shigella virulence determinant, and rcsC, a sensor kinase, are important at late stages of infection. A second Salmonella gene that has VirK homology, somA, is also important for systemic infection in mice. We have shown that expression of both virK and somA requires the transcription factor PhoP, whereas rcsC does not. Additionally, rcsC expression does not require the transcription factor OmpR, but expression of one of the known targets of RcsC, the yojN rcsB putative operon, does require OmpR. virK, somA and rcsC are expressed in tissue culture macrophages and confer Salmonella resistance to the cationic peptide polymyxin B. We conclude that virK, somA and rcsC are important for late stages of Salmonella enteric fever, and that they probably contribute to the remodelling of the bacterial outer membrane in response to the host environment.
引用
收藏
页码:385 / 400
页数:16
相关论文
共 61 条
[1]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   SALMONELLA-TYPHIMURIUM ACTIVATES VIRULENCE GENE-TRANSCRIPTION WITHIN ACIDIFIED MACROPHAGE PHAGOSOMES [J].
ARANDA, CMA ;
SWANSON, JA ;
LOOMIS, WP ;
MILLER, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10079-10083
[4]   The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity [J].
Arricau, N ;
Hermant, D ;
Waxin, H ;
Ecobichon, C ;
Duffey, PS ;
Popoff, MY .
MOLECULAR MICROBIOLOGY, 1998, 29 (03) :835-850
[5]  
Ausubel F.M., 1988, CURRENT PROTOCOLS MO
[6]   Autoinduction of the ompR response regulator by acid shock and control of the Salmonella enterica acid tolerance response [J].
Bang, IS ;
Audia, JP ;
Park, YK ;
Foster, JW .
MOLECULAR MICROBIOLOGY, 2002, 44 (05) :1235-1250
[7]  
Baumler AJ, 1997, ADV EXP MED BIOL, V412, P149
[8]  
Bäumler AJ, 1998, J BACTERIOL, V180, P2220
[9]   mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides [J].
Brodsky, IE ;
Ernst, RK ;
Miller, SI ;
Falkow, S .
JOURNAL OF BACTERIOLOGY, 2002, 184 (12) :3203-3213
[10]   Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S-enterica serovar Typhimurium DNA microarray [J].
Chan, K ;
Baker, S ;
Kim, CC ;
Detweiler, CS ;
Dougan, G ;
Falkow, S .
JOURNAL OF BACTERIOLOGY, 2003, 185 (02) :553-563