Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy

被引:93
作者
Yang, Y
Wang, H
Erie, DA
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Curriculum Mat Sci, Chapel Hill, NC 27599 USA
关键词
atomic force microscopy (AFM); force microscopy; DNA-protein interactions; protein-protein interactions; single-molecule techniques; solution imaging; volume analysis; gene regulation; stoichiometry; association constants;
D O I
10.1016/S1046-2023(02)00308-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Atomic force microscopy (AFM) has been applied in many biological investigations in the past 15 years. This review focuses on the application of AFM for quantitatively characterizing the structural and thermodynamic properties of protein-protein and protein-nucleic acid complexes. AFM can be used to determine the stoichiometries and association constants of multiprotein assemblies and to quantify changes in conformations of proteins and protein-nucleic acid complexes. In addition, AFM in solution permits the observation of the dynamic properties of biomolecular complexes and the measurement of intermolecular forces between biomolecules. Recent advances in cryogenic AFM, AFM on two-dimensional crystals, carbon nanotube probes, solution imaging, high-speed AFM, and manipulation capabilities enhance these applications by improving AFM resolution and the dynamic and operative capabilities of the AFM. These developments make AFM a powerful tool for investigating the biomolecular assemblies and interactions that govern gene regulation. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:175 / 187
页数:13
相关论文
共 97 条
[1]   DNA bending by EcoRI DNA methyltransferase accelerates base flipping but compromises specificity [J].
Allan, BW ;
Garcia, R ;
Maegley, K ;
Mort, J ;
Wong, D ;
Lindstrom, W ;
Beechem, JM ;
Reich, NO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :19269-19275
[2]   A high-speed atomic force microscope for studying biological macromolecules [J].
Ando, T ;
Kodera, N ;
Takai, E ;
Maruyama, D ;
Saito, K ;
Toda, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12468-12472
[3]  
[Anonymous], PROCEDURES SCANNING
[4]   Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope [J].
Argaman, M ;
Golan, R ;
Thomson, NH ;
Hansma, HG .
NUCLEIC ACIDS RESEARCH, 1997, 25 (21) :4379-4384
[5]   Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part I. Atomic force microscopy [J].
Balashev, K ;
Jensen, TR ;
Kjaer, K ;
Bjornholm, T .
BIOCHIMIE, 2001, 83 (05) :387-397
[6]   DIFFUSION-DRIVEN MECHANISMS OF PROTEIN TRANSLOCATION ON NUCLEIC-ACIDS .1. MODELS AND THEORY [J].
BERG, OG ;
WINTER, RB ;
VONHIPPEL, PH .
BIOCHEMISTRY, 1981, 20 (24) :6929-6948
[7]   MOTION AND ENZYMATIC DEGRADATION OF DNA IN THE ATOMIC-FORCE MICROSCOPE [J].
BEZANILLA, M ;
DRAKE, B ;
NUDLER, E ;
KASHLEV, M ;
HANSMA, PK ;
HANSMA, HG .
BIOPHYSICAL JOURNAL, 1994, 67 (06) :2454-2459
[8]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[9]   Determination of preferential binding sites for anti-dsRNA antibodies on double-stranded RNA by scanning force microscopy [J].
Bonin, M ;
Oberstrass, J ;
Lukacs, N ;
Ewert, K ;
Oesterschulze, E ;
Kassing, R ;
Nellen, W .
RNA, 2000, 6 (04) :563-570
[10]   Grabbing the cat by the tail: manipulating molecules one by one [J].
Bustamante C. ;
Macosko J.C. ;
Wuite G.J.L. .
Nature Reviews Molecular Cell Biology, 2000, 1 (2) :130-136