Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins

被引:230
作者
Sun, Li-Ping
Seemann, Joachim
Goldstein, Joseph L. [1 ]
Brown, Michael S.
机构
[1] Univ Texas, SW Med Ctr, Dept Mol Genet, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Cell Biol, Dallas, TX 75390 USA
关键词
cholesterol homeostasis; COPII vesicles; SREBP pathway; oxysterols;
D O I
10.1073/pnas.0700907104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two classes of sterols, cholesterol and oxysterols, block export of sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi by preventing the binding of COPII-coated proteins to a hexapeptide sorting signal (MELADL) in Scap, the SREBP-escort protein. Here, we show that anti-MELADL blocks CON binding in vitro, and microinjection of Fab anti-MELADL blocks Scap-SREBP movement in cells. Cholesterol and oxysterols block COPII binding to MELADL by binding to different intracellular receptors, cholesterol to Scap and oxysterols to Insig. Cysteine labeling shows that both binding events produce a conformational change near the MELADL sequence, abrogating COPII binding but not anti-MELADL binding. Mutagenesis experiments raise the possibility that the distance of MELADL from the ER membrane is crucial for COPII binding, and we speculate that sterols and Insig block SREBP transport by altering the location of MELADL with respect to the membrane, rendering it inaccessible to COPII proteins.
引用
收藏
页码:6519 / 6526
页数:8
相关论文
共 34 条
[1]   Cholesterol-induced conformational change in SCAP enhanced by insig proteins and mimicked by cationic amphiphiles [J].
Adams, CM ;
Goldstein, JL ;
Brown, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10647-10652
[2]   Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and insigs [J].
Adams, CM ;
Reitz, J ;
De Brabander, JK ;
Feramisco, JD ;
Li, L ;
Brown, MS ;
Goldstein, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (50) :52772-52780
[3]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[4]   ER export: public transportation by the COPII coach [J].
Antonny, B ;
Schekman, R .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (04) :438-443
[5]   Cargo selection by the COPII budding machinery during export from the ER [J].
Aridor, M ;
Weissman, J ;
Bannykh, S ;
Nuoffer, C ;
Balch, WE .
JOURNAL OF CELL BIOLOGY, 1998, 141 (01) :61-70
[6]   Molecular recognition of cargo by the COPII complex: A most accommodating coat [J].
Barlowe, C .
CELL, 2003, 114 (04) :395-397
[7]   Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat [J].
Bi, XP ;
Corpina, RA ;
Goldberg, J .
NATURE, 2002, 419 (6904) :271-277
[8]   The mechanisms of vesicle budding and fusion [J].
Bonifacino, JS ;
Glick, BS .
CELL, 2004, 116 (02) :153-166
[9]   Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism [J].
Brown, AJ ;
Sun, LP ;
Feramisco, JD ;
Brown, MS ;
Goldstein, JL .
MOLECULAR CELL, 2002, 10 (02) :237-245
[10]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048