A structural analysis of the differential proteolysis of vitellogenin (Vtg)-derived yolk proteins in the maturing oocytes of a marine teleost that spawns very large pelagic eggs is presented. Two full-length hepatic cDNAs (hhvtgAa and hhvtgAb) encoding paralogous vitellogenins (HhvtgAa and HhvtgAb) were cloned from nonestrogenized Atlantic halibut, and the N-termini of their subdomain structures were mapped to the oocyte and egg yolk proteins (Yps). The maturational oocyte Yp degradation products were further mapped to the free amino acid (FAA) pool in the ovulated egg. The deduced amino acid sequences conformed to the linear NH2-(LvH-Pv-LvL-beta-CT)-COO- structure of complete teleost Vtgs. However, the Yps did not match the expected cleavage products of complete Vtgs. Specifically, the phosvitin subdomain of the HhvtgAa paralogue remains covalently attached to the lipovitellin light chain, while the phosvitin subdomain of the HhvtgAb parallogue remains covalently attached to a C-terminal fragment of the lipovitellin heavy chain (LvH). During oocyte hydration, the LvH of the HhvtgAa paralogue is disassembled and extensively degraded to FAA. In the HhvtgAb paralogue, the LvH is nicked in the C-sheet in a manner similar to that seen in lamprey and other teleosts. A small part of the C-teminal end of the LvH-Ab undergoes proteolysis to FAA, together with the phosvitin, beta' component, and much (similar to 65%) of the lipovitellin light chain (LvL-Ab). The independently measured FAA pool in the ovulated egg corroborates that calculated from differential proteolysis of the Yps. Based on the 3:1 (HhvtgAb:HhvtgAa) Yp expression ratio, each paralogue contributes approximately equal amounts of FAA to the organic osmolyte pool of the hydrating oocyte during maturation.