Tests for nonparametric parts on partially linear single index models

被引:12
作者
Zhang, Ri-quan [1 ]
机构
[1] E China Normal Univ, Dept Stat, Shanghai 200062, Peoples R China
[2] Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 03期
关键词
local linear method; partially linear single index models; generalized likelihood ratio test; Wilks phenomenon; x(2)-distribution;
D O I
10.1007/s11425-007-2059-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tests for nonparametric parts on partially linear single index models are considered in this paper. Based on the estimates obtained by the local linear method, the generalized likelihood ratio tests for the models are established. Under the null hypotheses the normalized tests follow asymptotically the X-distribution with the scale constants and the degrees of freedom being independent of the nuisance parameters, which is called the Wilks phenomenon. A simulated example is used to evaluate the performances of the testing procedures empirically.
引用
收藏
页码:439 / 449
页数:11
相关论文
共 11 条
[1]   Generalized partially linear single-index models [J].
Carroll, RJ ;
Fan, JQ ;
Gijbels, I ;
Wand, MP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) :477-489
[2]   A CENTRAL-LIMIT-THEOREM FOR GENERALIZED QUADRATIC-FORMS [J].
DEJONG, P .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (02) :261-277
[3]   Nonparametric inferences for additive models [J].
Fan, JQ ;
Jiang, JC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (471) :890-907
[4]   Generalised likelihood ratio tests for spectral density [J].
Fan, JQ ;
Zhang, WY .
BIOMETRIKA, 2004, 91 (01) :195-209
[5]   Generalized likelihood ratio statistics and Wilks phenomenon [J].
Fan, JQ ;
Zhang, CM ;
Zhang, J .
ANNALS OF STATISTICS, 2001, 29 (01) :153-193
[6]  
INGSTER Y. I., 1993, MATH METHODS STAT, V2, P249
[7]  
Ingster Y. I., 1993, MATH METHODS STAT, V2, P85
[8]  
INGSTER YI, 1993, MATH METHODS STAT, V2, P171
[9]  
Yu Y, 2004, STAT SINICA, V14, P449
[10]   Penalized spline estimation for partially linear single-index models [J].
Yu, Y ;
Ruppert, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) :1042-1054