Classification trees: An alternative to traditional land cover classifiers

被引:318
作者
Hansen, M
Dubayah, R
DeFries, R
机构
[1] UNIV MARYLAND,LAB GLOBAL REMOTE SENSING STUDIES,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,INST ADV COMP STUDIES,COLLEGE PK,MD 20742
基金
美国国家航空航天局;
关键词
D O I
10.1080/01431169608949069
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Classification trees are a powerful alternative to more traditional approaches of land cover classification. Trees provide a hierarchical and nonlinear classification method and are suited to handling non-parametric training data as well as categorical or missing data. By revealing the predictive hierarchical structure of the independent variables, the tree allows for great flexibility in data analysis and interpretation. In this Letter, we compare a tree's performance to that of a maximum likelihood classifier using a 1 degrees by 1 degrees global data set. The tree's accuracy in classifying a validation data set is comparable to that when using maximum likelihood (82 per cent). The tree also may be used to reduce the dimensionality of data sets and to find those metrics that are most useful for discriminating among cover types.
引用
收藏
页码:1075 / 1081
页数:7
相关论文
共 11 条
  • [1] AGBU PA, 1994, NOAA PATHFINDER AVHR
  • [2] Breiman L., 1984, Classification and Regression Trees, DOI DOI 10.2307/2530946
  • [3] Clark L.A., 1992, STAT MODELS S, P377
  • [4] DEFRIES R, 1995, IN PRESS REMOTE SENS
  • [5] NDVI-DERIVED LAND-COVER CLASSIFICATIONS AT A GLOBAL-SCALE
    DEFRIES, RS
    TOWNSHEND, JRG
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (17) : 3567 - 3586
  • [6] Delnes RS, 1994, ENV REMOTE SENSING R, P84
  • [7] THE PATHFINDER AVHRR LAND DATA SET - AN IMPROVED COARSE RESOLUTION DATA SET FOR TERRESTRIAL MONITORING
    JAMES, ME
    KALLURI, SNV
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (17) : 3347 - 3363
  • [8] MAPPING THE DENSE HUMID FOREST OF CAMEROON AND ZAIRE USING AVHRR SATELLITE DATA
    LAPORTE, N
    JUSTICE, C
    KENDALL, J
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1995, 16 (06) : 1127 - 1145
  • [9] LOVELAND TR, 1991, PHOTOGRAMM ENG REM S, V57, P1453
  • [10] REGRESSION TREE ANALYSIS OF SATELLITE AND TERRAIN DATA TO GUIDE VEGETATION SAMPLING AND SURVEYS
    MICHAELSEN, J
    SCHIMEL, DS
    FRIEDL, MA
    DAVIS, FW
    DUBAYAH, RC
    [J]. JOURNAL OF VEGETATION SCIENCE, 1994, 5 (05) : 673 - 686