Study on the Anatase to Rutile Phase Transformation and Controlled Synthesis of Rutile Nanocrystals with the Assistance of Ionic Liquid

被引:78
作者
Ding, Kunlun [1 ]
Miao, Zhenjiang [1 ]
Hu, Baoji [1 ]
An, Guimin [1 ]
Sun, Zhenyu [1 ]
Han, Buxing [1 ]
Liu, Zhimin [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
关键词
LOW-TEMPERATURE SYNTHESIS; ORIENTED ATTACHMENT; HYDROTHERMAL SYNTHESIS; TIO2; NANOCRYSTALS; NANOSIZE RUTILE; PHOTOCATALYTIC PROPERTIES; OXIDE NANOCRYSTALS; CRYSTAL-GROWTH; TO-RUTILE; TITANIA;
D O I
10.1021/la100468e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We developed a route to synthesize rutile TiO2 nanocrystals (NCs) with the assistance of 1-butyl-3-methylimidazolium chloride (bmim(+)Cl(-)). The phase transformation from anatase to rutile phase was investigated, and a simple model to describe the phase transformation process was proposed considering that the nucleation and growth of rutile phase were determined by the aggregation manner of anatase NCs and Ostwald ripening process, respectively. It was demonstrated that the surfactant-like nature of the IL used was crucial for controlling the crystallization process via controlling the aggregation manner of the NCs. The phase, shape, and size of TiO2 NCs could be tuned by the controlling the operating conditions, such as temperature, solution acidity, and reactant concentration of the bmim(+)Cl(-)/TiCl4/H2O reaction system. Phase-pure rutile multipods and 1D nanorods with different sizes were controllably obtained.
引用
收藏
页码:10294 / 10302
页数:9
相关论文
共 113 条
[1]   Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures [J].
Antonietti, M ;
Kuang, DB ;
Smarsly, B ;
Yong, Z .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (38) :4988-4992
[2]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[3]   Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers [J].
Aruna, ST ;
Tirosh, S ;
Zaban, A .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (10) :2388-2391
[4]   Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid [J].
Bacsa, RR ;
Kiwi, J .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 16 (01) :19-29
[5]  
BANFIELD JF, 1992, AM MINERAL, V77, P545
[6]   Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J].
Barnard, AS ;
Curtiss, LA .
NANO LETTERS, 2005, 5 (07) :1261-1266
[7]   Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions [J].
Barnard, AS ;
Zapol, P ;
Curtiss, LA .
SURFACE SCIENCE, 2005, 582 (1-3) :173-188
[8]   Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals [J].
Buonsanti, Raffaella ;
Grillo, Vincenzo ;
Carlino, Elvio ;
Giannini, Cinzia ;
Kipp, Tobias ;
Cingolani, Roberto ;
Cozzoli, Pantaleo Davide .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) :11223-11233
[9]   Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid [J].
Carbone, L ;
Kudera, S ;
Carlino, E ;
Parak, WJ ;
Giannini, C ;
Cingolani, R ;
Manna, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (03) :748-755
[10]   Photoinduced reactivity of titanium dioxide [J].
Carp, O ;
Huisman, CL ;
Reller, A .
PROGRESS IN SOLID STATE CHEMISTRY, 2004, 32 (1-2) :33-177