Spectrophotometric variable selection by mutual information

被引:45
作者
Benoudjit, N
François, D
Meurens, M
Verleysen, M
机构
[1] Catholic Univ Louvain, Microelect Lab, DICE, B-1348 Louvain, Belgium
[2] CESAME, B-1348 Louvain, Belgium
[3] BNUT, Spectrophotometr Lab, B-1348 Louvain, Belgium
关键词
spectrophotometric variable selection; mutual information; spectrophotometry;
D O I
10.1016/j.chemolab.2004.04.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spectrophotometric data often comprise a great number of numerical components or variables that can be used in calibration models. When a large number of such variables are incorporated into a particular model, many difficulties arise, and it is often necessary to reduce the number of spectral variables. This paper proposes an incremental (Forward-Backward) procedure, initiated using an entropy-based criterion (mutual information), to choose the first variable. The advantages of the method are discussed; results in quantitative chemical analysis by spectrophotometry show the improvements obtained with respect to traditional and nonlinear calibration models. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 32 条
[1]   PLS regression methods [J].
Höskuldsson, Agnar .
Journal of Chemometrics, 1988, 2 (03) :211-228
[2]  
[Anonymous], MULTIVARIABLE DENSIT
[3]  
Belsley DA, 1980, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity
[4]   Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models [J].
Benoudjit, N ;
Cools, E ;
Meurens, M ;
Verleysen, M .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 70 (01) :47-53
[5]   On the kernel widths in radial-basis function networks [J].
Benoudjit, N ;
Verleysen, M .
NEURAL PROCESSING LETTERS, 2003, 18 (02) :139-154
[6]   Near-infrared spectroscopy in the pharmaceutical industry [J].
Blanco, M ;
Coello, J ;
Iturriaga, H ;
Maspoch, S ;
de la Pezuela, C .
ANALYST, 1998, 123 (08) :135R-150R
[7]  
Bonnlander B.V., 1994, P INT S ART NEUR NET
[8]   Detection of nonlinearity in multivariate calibration [J].
Centner, V ;
de Noord, OE ;
Massart, DL .
ANALYTICA CHIMICA ACTA, 1998, 376 (02) :153-168
[9]  
Chen C H, 1973, STAT PATTERN RECOGNI
[10]  
Draper N., 1981, Applied Regression Analysis, VSecond