On the Generalized Poisson Distribution

被引:16
作者
Tuenter, HJH [1 ]
机构
[1] York Univ, Schulich Sch Business, Toronto, ON M3J 1P3, Canada
关键词
probability theory; Euler's difference lemma;
D O I
10.1111/1467-9574.00147
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use Euler's difference lemma to prove that, for theta >0 and 0 less than or equal to lambda <1, the function P-n defined on the non-negative integers by Pn(<theta>, lambda) = theta>(*) over bar *(theta + n lambda)(n-1)/n! theta (-n lambda-theta) defines a probability distribution, known as the Generalized Poisson Distribution.
引用
收藏
页码:374 / 376
页数:3
相关论文
共 6 条
[1]   GENERALIZATION OF POISSON DISTRIBUTION [J].
CONSUL, PC ;
JAIN, GC .
TECHNOMETRICS, 1973, 15 (04) :791-799
[2]  
Consul PC., 1989, GEN POISSON DISTRIBU
[3]   EULER FORMULA FOR NTH DIFFERENCES OF POWERS [J].
GOULD, HW .
AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (06) :450-467
[4]   On an identity for Abel and on other analogous formulae. [J].
Jensen, JLWV .
ACTA MATHEMATICA, 1902, 26 (01) :307-318
[5]  
Lerner B., 1997, PROBABILITY MATH STA, V17, P377
[6]  
POLYA G, 1925, AUFGABEN LEHRSATZE A, V1