Alterations of mitochondrial DNA in common diseases and disease states: Aging, neurodegeneration, heart failure, diabetes and cancer

被引:102
作者
Kang, DC [1 ]
Hamasaki, N [1 ]
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Clin Chem & Lab Med, Higashi Ku, Fukuoka 8128582, Japan
关键词
mitochondria; mitochondrial DNA; reactive oxygen species (ROS); oxidative stress; aging; DNA damage; DNA repair;
D O I
10.2174/0929867053363081
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has long been considered that mitochondrial DNA disease is a rare genetic disorder causing neuromyopathy. However, alterations of mitochondrial DNA recently have been recognized to play an important role in the pathogenesis of so-called common diseases such as heart failure, diabetes, and cancer. Although some of these alterations are inherited, more and more attention is being focused on the accumulation of mitochondrial DNA mutations in somatic cells, particularly terminally differentiated cells such as cardiomyocytes and neurons that occurs with age. Mitochondrial DNA is more vulnerable to alteration than nuclear DNA, mainly for two reasons. First, mitochondria are a major source of intracellular reactive oxygen species (ROS). Therefore mitochondrial DNA is under much stronger oxidative stress than is nuclear DNA. Second, mitochondria have a matrix-side negative membrane potential for oxidative phosphorylation. This membrane potential concentrates lipophilic cations inside mitochondria up to similar to1,000-fold. Unfortunately, some therapeutic reagents are lipophilic cations, and such exogenously added chemicals are prone to damage mitochondria. AZT, an anti-HIV drug, causes mitochondrial myopathy as a side effect, which is a typical example of how chemotherapeutics adversely affect metabolism of mitochondrial DNA. In this review, we focus on ROS and chemical damage of mitochondrial DNA in common diseases.
引用
收藏
页码:429 / 441
页数:13
相关论文
共 114 条
[1]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   DEPLETION OF MUSCLE MITOCHONDRIAL-DNA IN AIDS PATIENTS WITH ZIDOVUDINE-INDUCED MYOPATHY [J].
ARNAUDO, E ;
DALAKAS, M ;
SHANSKE, S ;
MORAES, CT ;
DIMAURO, S ;
SCHON, EA .
LANCET, 1991, 337 (8740) :508-510
[4]   MITOCHONDRIAL MUTATIONS MAY INCREASE OXIDATIVE STRESS - IMPLICATIONS FOR CARCINOGENESIS AND AGING [J].
BANDY, B ;
DAVISON, AJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1990, 8 (06) :523-539
[5]   Mitochondrial disorders. A diagnostic challenge in clinical chemistry [J].
Bauer, MF ;
Gempel, K ;
Hofmann, S ;
Jaksch, M ;
Philbrook, C ;
Gerbitz, KD .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 1999, 37 (09) :855-876
[6]  
Beckman K B, 1996, Methods Enzymol, V264, P442, DOI 10.1016/S0076-6879(96)64040-3
[7]  
BESTWICK RK, 1982, J BIOL CHEM, V257, P9305
[8]  
BESTWICK RK, 1982, J BIOL CHEM, V257, P9300
[9]   RAPID EVOLUTION OF ANIMAL MITOCHONDRIAL-DNA [J].
BROWN, WM ;
GEORGE, M ;
WILSON, AC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (04) :1967-1971
[10]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820