The genome of Cryptosporidium hominis

被引:402
作者
Xu, P
Widmer, G
Wang, YP
Ozaki, LS
Alves, JM
Serrano, MG
Puiu, D
Manque, P
Akiyoshi, D
Mackey, AJ
Pearson, WR
Dear, PH
Bankier, AT
Peterson, DL
Abrahamsen, MS
Kapur, V
Tzipori, S
Buck, GA
机构
[1] Virginia Commonwealth Univ, Ctr Study Biol Complex, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Microbiol & Immunol, Richmond, VA 23298 USA
[3] Virginia Commonwealth Univ, Philips Inst Oral & Craniofacial Mol Biol, Richmond, VA 23298 USA
[4] Tufts Univ, Sch Vet Med, North Grafton, MA 01536 USA
[5] Univ Virginia, Dept Microbiol, Charlottesville, VA 22908 USA
[6] Univ Virginia, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA
[7] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[8] Virginia Commonwealth Univ, Dept Biochem & Mol Biophys, Richmond, VA 23298 USA
[9] Univ Minnesota, Dept Vet & Biomed Sci, St Paul, MN 55108 USA
[10] Univ Minnesota, Biomed Genom Ctr, St Paul, MN 55108 USA
[11] Univ Minnesota, Dept Microbiol, St Paul, MN 55108 USA
基金
美国国家航空航天局; 美国国家卫生研究院;
关键词
D O I
10.1038/nature02977
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cryptosporidium species cause acute gastroenteritis and diarrhoea worldwide. They are members of the Apicomplexa - protozoan pathogens that invade host cells by using a specialized apical complex and are usually transmitted by an invertebrate vector or intermediate host. In contrast to other Apicomplexans, Cryptosporidium is transmitted by ingestion of oocysts and completes its life cycle in a single host. No therapy is available, and control focuses on eliminating oocysts in water supplies(1). Two species, C. hominis and C. parvum, which differ in host range, genotype and pathogenicity, are most relevant to humans(1-3). C. hominis is restricted to humans, whereas C. parvum also infects other mammals(2). Here we describe the eight-chromosome similar to9.2-million-base genome of C. hominis(2). The complement of C. hominis protein-coding genes shows a striking concordance with the requirements imposed by the environmental niches the parasite inhabits. Energy metabolism is largely from glycolysis. Both aerobic and anaerobic metabolisms are available, the former requiring an alternative electron transport system in a simplified mitochondrion. Biosynthesis capabilities are limited, explaining an extensive array of transporters. Evidence of an apicoplast is absent, but genes associated with apical complex organelles are present. C. hominis and C. parvum exhibit very similar gene complements, and phenotypic differences between these parasites must be due to subtle sequence divergence.
引用
收藏
页码:1107 / 1112
页数:6
相关论文
共 30 条
  • [1] Complete genome sequence of the apicomplexan, Cryptosporidium parvum
    Abrahamsen, MS
    Templeton, TJ
    Enomoto, S
    Abrahante, JE
    Zhu, G
    Lancto, CA
    Deng, MQ
    Liu, C
    Widmer, G
    Tzipori, S
    Buck, GA
    Xu, P
    Bankier, AT
    Dear, PH
    Konfortov, BA
    Spriggs, HF
    Iyer, L
    Anantharaman, V
    Aravind, L
    Kapur, V
    [J]. SCIENCE, 2004, 304 (5669) : 441 - 445
  • [2] Genetic analysis of a Cryptosporidium parvum human genotype 1 isolate passaged through different host species
    Akiyoshi, DE
    Feng, X
    Buckholt, MA
    Widmer, G
    Tzipori, S
    [J]. INFECTION AND IMMUNITY, 2002, 70 (10) : 5670 - 5675
  • [3] Kinetic characterization of bifunctional thymidylate Synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis -: A paradigm shift for TS activity and channeling behavior
    Atreya, CE
    Anderson, KS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) : 18314 - 18322
  • [4] Integrated mapping, chromosomal sequencing and sequence analysis of Cryptosporidium parvum
    Bankier, AT
    Spriggs, HF
    Fartmann, B
    Konfortov, BA
    Madera, M
    Vogel, C
    Teichmann, SA
    Ivens, A
    Dear, PH
    [J]. GENOME RESEARCH, 2003, 13 (08) : 1787 - 1799
  • [5] Parasitophorous vacuole: Morphofunctional diversity in different coccidian genera (a short insight into the problem)
    Beyer, TV
    Svezhova, NV
    Radchenko, AI
    Sidorenko, NV
    [J]. CELL BIOLOGY INTERNATIONAL, 2002, 26 (10) : 861 - 871
  • [6] Constitutive calcium-independent release of Toxoplasma gondii dense granules occurs through the NSF/SNAP/SNARE/Rab machinery
    Chaturvedi, S
    Qi, HL
    Coleman, D
    Rodriguez, A
    Hanson, PI
    Striepen, B
    Roos, DS
    Joiner, KA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) : 2424 - 2431
  • [7] Genome sequence of the human malaria parasite Plasmodium falciparum
    Gardner, MJ
    Hall, N
    Fung, E
    White, O
    Berriman, M
    Hyman, RW
    Carlton, JM
    Pain, A
    Nelson, KE
    Bowman, S
    Paulsen, IT
    James, K
    Eisen, JA
    Rutherford, K
    Salzberg, SL
    Craig, A
    Kyes, S
    Chan, MS
    Nene, V
    Shallom, SJ
    Suh, B
    Peterson, J
    Angiuoli, S
    Pertea, M
    Allen, J
    Selengut, J
    Haft, D
    Mather, MW
    Vaidya, AB
    Martin, DMA
    Fairlamb, AH
    Fraunholz, MJ
    Roos, DS
    Ralph, SA
    McFadden, GI
    Cummings, LM
    Subramanian, GM
    Mungall, C
    Venter, JC
    Carucci, DJ
    Hoffman, SL
    Newbold, C
    Davis, RW
    Fraser, CM
    Barrell, B
    [J]. NATURE, 2002, 419 (6906) : 498 - 511
  • [8] CDART: Protein homology by domain architecture
    Geer, LY
    Domrachev, M
    Lipman, DJ
    Bryant, SH
    [J]. GENOME RESEARCH, 2002, 12 (10) : 1619 - 1623
  • [9] Cytosol-mitochondria transfer of reducing equivalents by a lactate shuttle in heterotrophic Euglena
    Jasso-Chávez, R
    Moreno-Sánchez, R
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (24): : 4942 - 4951
  • [10] Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi
    Katinka, MD
    Duprat, S
    Cornillot, E
    Méténier, G
    Thomarat, F
    Prensier, G
    Barbe, V
    Peyretaillade, E
    Brottier, P
    Wincker, P
    Delbac, F
    El Alaoui, H
    Peyret, P
    Saurin, W
    Gouy, M
    Weissenbach, J
    Vivarès, CP
    [J]. NATURE, 2001, 414 (6862) : 450 - 453