Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice:: A new in vitro model of the blood-brain barrier

被引:53
作者
Bendfeldt, Kerstin [1 ]
Radojevic, Vesna
Kapfhammer, Josef
Nitsch, Cordula
机构
[1] Univ Basel, Sect Neuroanat, Inst Anat, CH-4056 Basel, Switzerland
[2] Univ Basel, Sect Neurodev, Inst Anat, CH-4056 Basel, Switzerland
关键词
blood-brain barrier; FGF-2; occludin; ZO-1; claudin-3; claudin-5;
D O I
10.1523/JNEUROSCI.4033-06.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This study was performed to examine the maintenance of blood vessels in vitro in cortical organotypic slice cultures of mice with special emphasis on basic fibroblast growth factor (FGF-2), which is known to promote angiogenesis and to preserve the integrity of the blood-brain barrier. Slices of neonatal day 3 or 4 mouse brain were maintained for 3, 7, or 10 d in vitro (DIV) under standard culture conditions or in the presence of FGF-2. Immunohistochemistry for factor VIII-related antigen or laminin revealed a relative low number of blood vessels under standard conditions. In contrast, moderate FGF-2 concentrations increased the number of vessels: with 0.5 ng/ml FGF-2 it was 1.4-fold higher after DIV 3 or 1.5-fold after DIV 7 compared with controls; with 5 ng/ml it was almost doubled in both cases. With an excess of 50 ng/ml, FGF-2 vessels were reduced after DIV 3 or similar to controls after DIV 7. FGF receptor 1 was preferentially found on endothelial cells; its immunolabeling was reduced in the presence of the ligand. Cell death detected by an ethidium bromide analog or the apoptosis marker caspase-3 was barely detectable during the 10 d culture period. Immunolabeling of the tight junction proteins Z0-1 (zonula occludens protein 1), occludin, claudin-5, and claudin-3 revealed evidence for structural integrity of the blood brain barrier in the presence of moderate FGF-2 concentrations. In conclusion, FGF-2 maintains blood vessels in vitro and preserves the composition of the tight junction. Hence, we propose FGF-2-treated organotypic cortical slices as a new tool for mechanistic studies of the blood-brain barrier.
引用
收藏
页码:3260 / 3267
页数:8
相关论文
共 38 条
[1]   Astrocyte-endothelial interactions and blood-brain barrier permeability [J].
Abbott, NJ .
JOURNAL OF ANATOMY, 2002, 200 (06) :629-638
[2]   TIGHT JUNCTIONS AND THE MOLECULAR-BASIS FOR REGULATION OF PARACELLULAR PERMEABILITY [J].
ANDERSON, JM ;
VANITALLIE, CM .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1995, 269 (04) :G467-G475
[3]  
Balda MS, 1998, J CELL SCI, V111, P541
[4]   Neural induction of the blood-brain barrier: Still an enigma [J].
Bauer, HC ;
Bauer, H .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2000, 20 (01) :13-28
[5]   Protection against hypoxia-induced increase in blood-brain barrier permeability:: role of tight junction proteins and NF-κB [J].
Brown, RC ;
Mark, KS ;
Egleton, RD ;
Huber, JD ;
Burroughs, AR ;
Davis, TP .
JOURNAL OF CELL SCIENCE, 2003, 116 (04) :693-700
[6]  
ElHafny B, 1996, J CELL PHYSIOL, V167, P451, DOI 10.1002/(SICI)1097-4652(199606)167:3<451::AID-JCP9>3.3.CO
[7]  
2-5
[8]   OCCLUDIN - A NOVEL INTEGRAL MEMBRANE-PROTEIN LOCALIZING AT TIGHT JUNCTIONS [J].
FURUSE, M ;
HIRASE, T ;
ITOH, M ;
NAGAFUCHI, A ;
YONEMURA, S ;
TSUKITA, S ;
TSUKITA, S .
JOURNAL OF CELL BIOLOGY, 1993, 123 (06) :1777-1788
[9]   Manner of interaction of heterogeneous claudin species within and between tight junction strands [J].
Furuse, M ;
Sasaki, H ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1999, 147 (04) :891-903
[10]   Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin [J].
Furuse, M ;
Fujita, K ;
Hiiragi, T ;
Fujimoto, K ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1998, 141 (07) :1539-1550