Self-Alignment of Plasmonic Gold Nanorods in Reconfigurable Anisotropic Fluids for Tunable Bulk Metamaterial Applications

被引:306
作者
Liu, Qingkun [1 ,2 ]
Cui, Yanxia [2 ]
Gardner, Dennis [1 ,3 ]
Li, Xin [2 ]
He, Sailing [2 ,4 ]
Smalyukh, Ivan I. [1 ,3 ,5 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Zhejiang Univ, Ctr Opt & Electromagnet Res, Hangzhou 310058, Zhejiang, Peoples R China
[3] Univ Colorado, Liquid Crystal Mat Res Ctr, Boulder, CO 80309 USA
[4] Royal Inst Technol, Dept Electromagnet Engn, S-10044 Stockholm, Sweden
[5] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Nanorods; liquid crystals; optical metamaterials; self-assembly; plasmonic nanoparticles; NEGATIVE REFRACTIVE-INDEX; NEMATIC LIQUID-CRYSTALS; NANOPARTICLES; SCATTERING; FILMS; CTAB;
D O I
10.1021/nl9042104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate the bulk self-alignment of dispersed gold nanorods imposed by the intrinsic cylindrical micelle self-assembly in nematic and hexagonal liquid crystalline phases of anisotropic fluids. External magnetic field and shearing allow for alignment and realignment of the liquid crystal matrix with the ensuing long-range orientational order of well-dispersed plasmonic nanorods. This results in a switchable polarization-sensitive plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The device-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of properties arising from combining the switchable nanoscale structure of anisotropic fluids with the surface plasmon resonance properties of the plasmonic nanorods.
引用
收藏
页码:1347 / 1353
页数:7
相关论文
共 36 条
[1]   Quantitative Analysis of Gold Nanorod Alignment after Electric Field-Assisted Deposition [J].
Ahmed, Waqqar ;
Kooij, E. Stefan ;
van Silfhout, Arend ;
Poelsema, Bene .
NANO LETTERS, 2009, 9 (11) :3786-3794
[2]   Tuning the scattering response of optical nanoantennas with nanocircuit loads [J].
Alu, Andrea ;
Engheta, Nader .
NATURE PHOTONICS, 2008, 2 (05) :307-310
[3]  
Baker JL, 2010, NANO LETT, V10, P195, DOI [10.1021/nl903187v, 10.1021/nl903187V]
[4]   THEORY OF MAGNETIC SUSPENSIONS IN LIQUID CRYSTALS [J].
BROCHARD, F ;
GENNES, PGD .
JOURNAL DE PHYSIQUE, 1970, 31 (07) :691-&
[5]   OBSERVATION OF MACROSCOPIC COLLECTIVE BEHAVIOR AND NEW TEXTURE IN MAGNETICALLY DOPED LIQUID-CRYSTALS [J].
CHEN, SH ;
AMER, NM .
PHYSICAL REVIEW LETTERS, 1983, 51 (25) :2298-2301
[6]   Magnetic alignment of aqueous CTAB in nematic and hexagonal liquid crystalline phases investigated by spin-1 NMR [J].
Clawson, Jacalyn S. ;
Holland, Gregory P. ;
Alam, Todd M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (22) :2635-2641
[7]   Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J].
Elghanian, R ;
Storhoff, JJ ;
Mucic, RC ;
Letsinger, RL ;
Mirkin, CA .
SCIENCE, 1997, 277 (5329) :1078-1081
[8]   Monolayer/bilayer transition in Langmuir films of derivatized gold nanoparticles at the gas/water interface: An x-ray scattering study [J].
Fukuto, M ;
Heilmann, RK ;
Pershan, PS ;
Badia, A ;
Lennox, RB .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (07) :3446-3459
[9]   DIRECTOR FLUCTUATIONS AND NUCLEAR-SPIN RELAXATION IN LYOTROPIC NEMATIC LIQUID-CRYSTALS [J].
HALLE, B ;
QUIST, PO ;
FURO, I .
PHYSICAL REVIEW A, 1992, 45 (06) :3763-3777
[10]   Nanoparticles in liquid crystals: Synthesis, self-assembly, defect formation and potential applications [J].
Hegmann, Torsten ;
Qi, Hao ;
Marx, Vanessa M. .
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2007, 17 (03) :483-508