A biochemically defined system for mammalian nonhomologous DNA end joining

被引:273
作者
Ma, YM
Lu, HH
Tippin, B
Goodman, MF
Shimazaki, N
Koiwai, O
Hsieh, CL
Schwarz, K
Lieber, MR
机构
[1] Univ So Calif, Norris Comprehens Canc Ctr, Los Angeles, CA 90033 USA
[2] Univ So Calif, Keck Sch Med, Dept Biochem & Mol Biol, Dept Pathol,Dept Mol Microbiol & Immunol, Los Angeles, CA 90033 USA
[3] Univ So Calif, Keck Sch Med, Dept Biol Sci, Los Angeles, CA 90033 USA
[4] Univ So Calif, Keck Sch Med, Dept Urol, Los Angeles, CA 90033 USA
[5] Tokyo Univ Sci, Fac Sci & Technol, Dept Appl Biol Sci, Noda, Chiba 2788510, Japan
[6] Univ Ulm, Dept Transfus Med, Inst Clin Transfus Med & Immunogenet, D-89081 Ulm, Germany
关键词
D O I
10.1016/j.molcel.2004.11.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nonhomologous end joining (NHEJ) is a major pathway in multicellular eukaryotes for repairing double-strand DNA breaks (DSBs). Here, the NHEJ reactions have been reconstituted in vitro by using purified Ku, DNA-PKCS, Artemis, and XRCC4:DNA ligase IV proteins to join incompatible ends to yield diverse junctions. Purified DNA polymerase (pol) X family members (pol mu, pol lambda, and TdT, but not pol beta) contribute to junctional additions in ways that are consistent with corresponding data from genetic knockout mice. The pol lambda and pol mu contributions require their BRCT domains and are both physically and functionally dependent on Ku. This indicates a specific biochemical function for Ku in NHEJ at incompatible DNA ends. The XRCC4:DNA ligase IV complex is able to ligate one strand that has only minimal base pairing with the antiparallel strand. This important aspect of the ligation leads to an iterative strand-processing model for the steps of NHEJ.
引用
收藏
页码:701 / 713
页数:13
相关论文
共 36 条
[1]   Immunoglobulin κ light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu [J].
Bertocci, B ;
De Smet, A ;
Berek, C ;
Weill, JC ;
Reynaud, CA .
IMMUNITY, 2003, 19 (02) :203-211
[2]   From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair [J].
Callebaut, I ;
Mornon, JP .
FEBS LETTERS, 1997, 400 (01) :25-30
[3]   MOLECULAR-BIOLOGY OF TERMINAL TRANSFERASE [J].
CHANG, LMS ;
BOLLUM, FJ .
CRC CRITICAL REVIEWS IN BIOCHEMISTRY, 1986, 21 (01) :27-52
[4]  
CHANG LMS, 1988, J BIOL CHEM, V263, P12509
[5]   Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase [J].
Chen, L ;
Trujillo, K ;
Sung, P ;
Tomkinson, AE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26196-26205
[6]   Synapsis of DNA ends by DNA-dependent protein kinase [J].
DeFazio, LG ;
Stansel, RM ;
Griffith, JD ;
Chu, G .
EMBO JOURNAL, 2002, 21 (12) :3192-3200
[7]   HELA NUCLEAR-PROTEIN RECOGNIZING DNA TERMINI AND TRANSLOCATING ON DNA FORMING A REGULAR DNA MULTIMERIC PROTEIN COMPLEX [J].
DEVRIES, E ;
VANDRIEL, W ;
BERGSMA, WG ;
ARNBERG, AC ;
VANDERVLIET, PC .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 208 (01) :65-78
[8]   DNA polymerase mu (Pol μ), homologous to TdT, could act as a DNA mutator in eukaryotic cells [J].
Domínguez, O ;
Ruiz, JF ;
de Lera, TL ;
García-Díaz, M ;
González, MA ;
Kirchhoff, T ;
Martínez-A, C ;
Bernad, A ;
Blanco, L .
EMBO JOURNAL, 2000, 19 (07) :1731-1742
[9]   DNA double strand break repair and chromosomal translocation: Lessons from animal models [J].
Ferguson, DO ;
Alt, FW .
ONCOGENE, 2001, 20 (40) :5572-5579
[10]  
Gauss GH, 1996, MOL CELL BIOL, V16, P258