Not ions alone: Barriers to ion permeation in nanopores and channels

被引:165
作者
Beckstein, O [1 ]
Tai, K [1 ]
Sansom, MSP [1 ]
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1021/ja045271e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A hydrophobic pore of subnanometer dimensions can appear impermeable to an ion even though its radius is still much wider than that of the ion. Pores of molecular dimensions can be found, for instance, in carbon nanotubes, zeolites, or ion channel proteins. We quantify this barrier to ion permeation by calculating the potential of mean force from umbrella-sampled molecular dynamics simulations and compare them to continuum-electrostatic Poisson-Boltzmann calculations. The latter fail to describe the ion barrier because they do not account for the properties of water in the pore. The barrier originates from the energetic cost to desolvate the ion. Even in wide pores, which could accommodate an ion and its hydration shell, a barrier of several kT remains because the liquid water phase is not stable in the hydrophobic pore. Thus, the properties of the solvent play a crucial role in determining permeation properties of ions in confinement at the molecular scale. Copyright © 2004 American Chemical Society.
引用
收藏
页码:14694 / 14695
页数:2
相关论文
共 26 条
[1]   Energetics of ion conduction through the gramicidin channel [J].
Allen, TW ;
Andersen, OS ;
Roux, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :117-122
[2]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[3]   Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel [J].
Bass, RB ;
Strop, P ;
Barclay, M ;
Rees, DC .
SCIENCE, 2002, 298 (5598) :1582-1587
[4]   The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores [J].
Beckstein, O ;
Sansom, MSP .
PHYSICAL BIOLOGY, 2004, 1 (1-2) :42-52
[5]   Liquid-vapor oscillations of water in hydrophobic nanopores [J].
Beckstein, O ;
Sansom, MSP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (12) :7063-7068
[6]   A hydrophobic gating mechanism for nanopores [J].
Beckstein, O ;
Biggin, PC ;
Sansom, MSP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (51) :12902-12905
[7]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[8]   Structure of the MscL homolog from Mycobacterium tuberculosis:: A gated mechanosensitive ion channel [J].
Chang, G ;
Spencer, RH ;
Lee, AT ;
Barclay, MT ;
Rees, DC .
SCIENCE, 1998, 282 (5397) :2220-2226
[9]   Confinement effects on freezing and melting [J].
Christenson, HK .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (11) :R95-R133
[10]   Continuum electrostatics fails to describe ion permeation in the gramicidin channel [J].
Edwards, S ;
Corry, B ;
Kuyucak, S ;
Chung, SH .
BIOPHYSICAL JOURNAL, 2002, 83 (03) :1348-1360