The role of peptide deformylase in protein biosynthesis:: A proteomic study

被引:39
作者
Bandow, JE
Becher, D
Büttner, K
Hochgräfe, F
Freiberg, C
Brötz, H
Hecker, M
机构
[1] Univ Greifswald, Inst Mikrobiol, Greifswald, Germany
[2] Bayer AG, Pharmforsch Zentrum, Wuppertal, Germany
关键词
actinonin; isoelectric point shift; peptide deformylation;
D O I
10.1002/pmic.200390043
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recently we investigated the influence of classical and emerging antibiotics on the proteome of Bacillus subtilis including in our studies actinonin, a potent novel inhibitor of peptide deformylase. The protein synthesis pattern under actinonin treatment changed so dramatically that a direct comparison to the control pattern was impossible. Dual channel imaging revealed that actinonin treatment caused the majority of newly synthesised proteins to accumulate in spots different from the ones usually observed, indicating a more acidic isoelectric point. Two strategies were used to investigate the nature of the charge shift. In the first place, protein patterns of a conditional peptide deformylase mutant under nonrepressing and repressing conditions were compared. Secondly, several protein pairs excised from two-dimensional (2-D) gels of the peptide deformylase mutant, exponentially growing untreated wild-type and the actinonin treated wild-type were investigated with matrix-assisted laser desorption/ionization and electrospray ionization (ESI) time of flight mass spectrometry (TOF MS) for the existence of N-terminal formylation. Under nonrepressing conditions the mutant protein pattern resembled that of the wild-type. The loss of peptide deformylase activity under repressing conditions led to the same p/ shift observed for actinonin treatment in the wild-type. Quadrupole TOF-MS on 11 protein pairs proved that the remaining N-terminal formyl residue was indeed responsible for the charge shift. Eight of these protein pairs were also present on 2-D gels of exponentially growing B. subtilis, where the more acidic,still formylated protein species represented the smaller parts.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 20 条
[1]   ON RELEASE OF FORMYL GROUP FROM NASCENT PROTEIN [J].
ADAMS, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1968, 33 (03) :571-&
[2]   REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS [J].
ANAGNOSTOPOULOS, C ;
SPIZIZEN, J .
JOURNAL OF BACTERIOLOGY, 1961, 81 (05) :741-&
[3]   Phosphate starvation-inducible proteins of Bacillus subtilis:: Proteomics and transcriptional analysis [J].
Antelmann, H ;
Scharf, C ;
Hecker, M .
JOURNAL OF BACTERIOLOGY, 2000, 182 (16) :4478-4490
[4]   General and oxidative stress responses in Bacillus subtilis: Cloning, expression, and mutation of the alkyl hydroperoxide reductase operon [J].
Antelmann, H ;
Engelmann, S ;
Schmid, R ;
Hecker, M .
JOURNAL OF BACTERIOLOGY, 1996, 178 (22) :6571-6578
[5]   First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis [J].
Antelmann, H ;
Bernhardt, J ;
Schmid, R ;
Mach, H ;
Volker, U ;
Hecker, M .
ELECTROPHORESIS, 1997, 18 (08) :1451-1463
[6]   Peptide deformylase as an antibacterial drug target:: Target validation and resistance development [J].
Apfel, CM ;
Locher, H ;
Evers, S ;
Takács, B ;
Hubschwerlen, C ;
Pirson, W ;
Page, MGP ;
Keck, W .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2001, 45 (04) :1058-1064
[7]   Bacillus subtilis tolerance of moderate concentrations of rifampin involves the σB-dependent general and multiple stress response [J].
Bandow, JE ;
Brötz, H ;
Hecker, M .
JOURNAL OF BACTERIOLOGY, 2002, 184 (02) :459-467
[8]  
Bernhardt J, 1999, ELECTROPHORESIS, V20, P2225, DOI 10.1002/(SICI)1522-2683(19990801)20:11<2225::AID-ELPS2225>3.3.CO
[9]  
2-#
[10]   Specific and general stress proteins in Bacillus subtilis - A two-dimensional protein electrophoresis study [J].
Bernhardt, J ;
Volker, U ;
Volker, A ;
Antelmann, H ;
Schmid, R ;
Mach, H ;
Hecker, M .
MICROBIOLOGY-UK, 1997, 143 :999-1017