Signal and noise in financial correlation matrices

被引:34
作者
Burda, Z [1 ]
Jurkiewicz, J [1 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
关键词
Random matrix theory; correlation matrix; eigenvalue spectrum;
D O I
10.1016/j.physa.2004.06.089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Random Matrix Theory one can derive exact relations between the eigenvalue spectrum of the covariance matrix and the eigenvalue spectrum of its estimator (experimentally measured correlation matrix). These relations will be used to analyze a particular case of the correlations in financial series and to show that contrary to earlier claims, correlations can be measured also in the "random" part of the spectrum. Implications for the portfolio optimization are briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 11 条
[1]  
Burda Z, 2003, ACTA PHYS POL B, V34, P87
[2]  
BURDA Z, CONDMAT0305672
[3]   Rational decisions, random matrices and spin glasses [J].
Galluccio, S ;
Bouchaud, JP ;
Potters, M .
PHYSICA A, 1998, 259 (3-4) :449-456
[4]   Noise dressing of financial correlation matrices [J].
Laloux, L ;
Cizeau, P ;
Bouchaud, JP ;
Potters, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (07) :1467-1470
[5]  
LILO F, CONDMAT0305546
[6]  
MARCENKO VA, 1967, MATH USSR SBORNIKL, P457
[7]  
Markowitz HM., 1991, PORTFOLIO SELECTION, V2nd
[8]   Noisy covariance matrices and portfolio optimization [J].
Pafka, S ;
Kondor, I .
EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (02) :277-280
[9]   Universal and nonuniversal properties of cross correlations in financial time series [J].
Plerou, V ;
Gopikrishnan, P ;
Rosenow, B ;
Amaral, LAN ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 1999, 83 (07) :1471-1474
[10]   ON THE EIGENVECTORS OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES [J].
SILVERSTEIN, JW .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 30 (01) :1-16