In the present study, we studied the activity of human placental alkaline phosphatase (PLAP) constraint in a planar surface in controlled molecular packing conditions. For the first time, Langmuir films (LFs) were prepared by the spreading of purified placental membranes (PPM) on the air water interface and their stability and rheological properties were studied. LFs exhibited a collapse pressure pi(C) = 48 mN/m, hysteresis during the compression-decompression cycle (C-D), indicating a plastic deformation, and a compressibility modulus (K) compatible with liquid-expanded phases. A phase transition point appeared at pi(T) = 28 mN/m and, following successive C-D, it moved toward lower surface areas and higher K, suggesting the lost of some non-PLAP proteins as components of vesicles that might protrude from the monolayer (confirmed by combining lipid/protein molar ratio analysis, PAGE-SDS and V-max). LFs were transferred at 35 mN/m to alkylated glasses to obtain Langmuir-Blodgett films (LB35) the stability of which was confirmed by AFM. The kinetics of p-nitrophenyl phosphate (pNPP) hydrolysis at 37 degrees C catalyzed by PPM was Michaelian and exhibited the thermostability at 60 degrees C typical of PLAP. In LB35, PLAP exhibited a sigmoidal kinetics which resembled the behavior of the partially metalated enzyme but might become from a cross-talk between protein and membrane structures.